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ABSTRACT: In this paper we present an efficient way to 
combine two or more Multiplicative Linear Congruential 
Generators (MLCGs) and propose several new generators. 
The individual MLCGs, making up the proposed combined 
generators, satisfy stringent theoretical criteria for the 
quality of the sequence they produce (based on the Spectral 
Test) and are easy to implement in a portable way. The 
proposed simple combination method is new and produces a 
generator whose period is the least common multiple of the 
individual periods. Each proposed generator has been 
submitted to a comprehensive battery of statistical tests. We 
also describe portable implementations, using 16-bit or 
32-bit integer arithmetic. The proposed generators have 
most of the beneficial properties of MLCGs. For example, 
each generator can be split into many independent 
generators and it is easy to skip a long subsequence of 
numbers without doing the work of generating them all. 

1. INTRODUCTION 
Random number generators are used in many areas 
including computer simulation, Monte-Carlo tech- 
niques in numerical analysis, test problem generation 
for the performance evaluation of computer algorithms, 
statistical sampling, and so on. Despite the large 
amount of theoretical research already done on this 
subject, many of the generators currently in use, espe- 
cially t.hose on the microcomputers, are seriously 
flawed [15]. Even some recently proposed [3, 201 or 
evaluated [6, 71 generators have a very weak theoreti- 
cal justification. The aim of this paper is to propose an 
efficient way to combine two or more random number 
generators to obtain a new, hopefully better one. 
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All practical “random number” generators on com- 
puters are actually simple deterministic computer pro- 
grams producing a periodic sequence of numbers that 
should look “apparently random.” A generator is de- 
fined by a finite state space S, a function f: S -+ S and an 
initial state so called the seed. The state of the generator 
evolves according to the recursion 

si := f(S-I), i = 1, 2, 3, . (11 

and the current state s, at stage i is usually transformed 
into a real value between 0 and 1, according to 

Ui := g(Si) (2) 

where g: S --, (0, 1). The period of the generator is the 
smallest positive integer p such that 

Si+p = Sz 

for some integer v 2 0. 

for all i > B (3) 

It is well accepted [2, 111 that to obtain a good gener- 
ator, the choice off and g should be based on a firm 
theoretical ground, and before being used for practical 
applications, the generator should be submitted to a 
comprehensive set of statistical tests. A good implemen- 
tation of the generator should be reasonably fast, porta- 
ble, and use few computer memory words [2, 191. 

The most commonly employed generator today is the 
Lehmer linear congruential generator (LCG), for which 

f(s) = (as + c) MOD m; g(s) = s/m; (4) 

where the modulus m and the multiplier a < m are posi- 
tive integers; and the constant c < m is a nonnegative 
integer. One usually chooses c = 0, in which case the 
generator is called multiplicative linear congruential gen- 
erator (MLCG) and its state space is S = {l, 2, , m - 1). 
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A MLCG has maximal period (p = m - 1) if m is prime 
and II is a primitive element modulo m [ll, p. 191. 

Other generators based on linear recursion modulo z 
have been proposed. Tausworthe generators [2, 111 are 
rather slow in their original form [lo]. The generalized 
feedback shift register generators [lo] are faster and 
have been shown to enjoy good global properties when 
the parameters are well chosen and when they are 
based on a primitive polynomial of very large degree. 
One shortcoming of these generators is that since the 
state s is a large array, they use a rather large amount 
of computer memory. 

Many disjoint random number subsequences are 
often required in simulation studies; for example, to 
facilitate synchronization for variance reduction, or to 
make independent replications [Z]. Such independent 
subsequences can be produced efficiently by “splitting” 
a single underlying generator, provided that seeds can 
be chosen regularly spaced and far enough apart in the 
cycle to insure that the sequences do not overlap. In 
other words, given any seed s, and positive integer j, 
there should be a quick way to compute si+, (without 
generating all intermediate values). That can be done 
quite easily for a MLCG, since 

Si+j = (U’S~) MOD M = (a’ MOD m)s, MOD m. (5) 

For any given i, (a’ MOD m) can be precomputed and 
(5) can be implemented like any regular MLCG. 

On smaller word size machines, MLCGs with large 
modulus are tricky to implement, while MLCGs with 
smaller modulus (e.g. m smaller than the largest integer 
representable on the machine) have periods that are too 
short to be used safely for serious applications. Various 
methods have been proposed for combining two or 
more pseudo-random number generators [2, 16, 211. 
The only mathematically demonstrated improvement of 
the combined generators over their components is a 
much longer period. Beyond this, the combination is an 
intuitively appealing heuristic supported by both em- 
pirical tests and the fact that certain demonstrable pa- 
thologies in the components are not apparent in the 
hybrids (see Figure 4). Some of the combination meth- 

’ ods, like bitwise addition modulo 2 [2], apply to LCGs 
having the same modulus; but if the individual LCGs 
have full periods, both they and the combined genera- 
tor have the same period, so, the period is not in- 
creased. Other methods, like shuffling [2, 161, do in- 
crease the period, but produce a generator that does 
not seem to have an efficient way to skip a long subse- 
quence of values. 

In Section 2, we propose a simple way to combine 
two or more MLCGs to obtain a generator whose period 
is the least common multiple of the individual periods. 
Skipping a fixed number of values can be done quite 
easily with the combined generator; it suffices to do it 
with each individual MLCG. 

Efficient and portable implementations of MLCGs are 
not always easy to program in a high level language. 

Wichmann and Hill [21] and Bratley et al. [2] have 
proposed a very efficient way to implement a portable 
MLCG with modulus m using only flog,(m + l)l-bit 
integer arithmetic, when a satisfies: 

a2 < m. (‘3 

In Section 3, we describe efficient ways to code porta- 
ble implementations for our combined generators by 
making use of the ideas introduced in [2, 211. 

Marsaglia [13] pointed out a theoretical weakness of 
all LCGs (eq. (4)). He showed that for any given k, all 
k-tuples (U;+, , . . , U;+k) of successive values generated 
by the LCG lie on a set of, at most, (k! m)‘lk equidistant 
parallel hyperplanes in the k-dimensional hypercube 
(0, l)k. When the number of hyperplanes is too small, 
obviously, this is a strong limitation to the k-dimen- 
sional uniformity. It has become common practice to 
evaluate LCGs in terms of their induced hyperplanes 
structures since then. 

Fishman and Moore [9] made an exhaustive search of 
all multipliers for a MLCG with modulus m = 231 - 1, 
to find those for which the maximal distance dk(u, m) 
between adjacent parallel hyperplanes in dimension k, 
for k = 2, . . , 6, does not exceed the theoretical lower 
bound on that distance by more than 25 percent. 

Unfortunately, none of the multipliers found by Fish- 
man and Moore [9] satisfy the inequality (6). In Sec- 
tion 4 of this paper, we present the results of an ex- 
tensive search for the best multipliers a in terms of 
dk(u, m), for k = 2, . . . , 6, among those that satisfy (6). 
The search has been made for a collection of prime 
values of m. We propose multipliers for which dk(u, m) 
is satisfactory for every k between 2 and 6. These multi- 
pliers are almost as good as those found in [g] and yield 
generators that are much easier to implement. Our 
presentation is preceded by a brief review of the princi- 
pal theoretical considerations that the choice of a mul- 
tiplier should be based on. 

Two new generators, produced by combining some 
MLCGs retained in Section 4, are proposed in Section 5, 
one for %%bit computers and the other for 16-bit com- 
puters. Both have been submitted to a battery of statis- 
tical tests and their empirical behavior is highly satis- 
factory. 

2. COMBINING LINEAR CONGRUENTIAL 
GENERATORS 
An efficient way to combine many MLCGs to obtain a 
hopefully better generator is proposed in this section. 
The method is based on the two following lemmas. 
Lemma 1 generalizes an informal remark made by 
Wichmann and Hill [21]. 

LEMMAS. Let W,, , WI be 1 independent discrete 
rundom variables such that WI is uniform between 0 and 
d - 1, where d is a positive integer: 

Pr(W, = n) = i 
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Then 

031 

follows a discrete uniform probability law between 0 and 
d-1. 

PROOF. We first show the result for 1 = 2. Let W2 be 
discrete (not necessarily uniform) between a and b. For 
0 5 n 5 d - 1, we have: 

m 
Pr(W = n) =c Pr(W1 + Wz = n + kd) 

k-0 

= i Pr(W2 = i)Pr(W, = (n - i)MOD d) 

u ,=a u 

In words, whatever the value i taken by Wz, W = 
(W, + W,)MOD d = (W, + i)MOD d is uniform between 
oandd-1. 

For 1 > 2, define the random variables 

Vz = (W, + W2)MOD d 

V3 = (Vz + W3)MOD d 

vr = (VI-~ + W/)MOD d. 

The result for 1 = 2 implies that all those V, are uniform 
discrete between 0 and d - 1 and since W = Vl, this 
completes the proof. 0 

LEMMA 2. Consider a family of 1 generators where for 
j=l,... ( 1, generator j has period pI and evolves according 
to 

SI.’ := f,(s,.,-11. (9) 

Then the period p of the sequence (si = (So,,, , Sl,i), i = 0, 
1, 2, 1, where so = (s~,o, . . , ~1,~) is a given seed, is the 
least common multiple of pI, , pi. 

PROOF. Each individual generator j has period p,, so 
p is a multiple of pj for each j. If some integer n is a 
multiple of every p,, then clearly sitn = si for any i 2 0, 
which implies that p 5 n. El 

Now we consider the case where each individual 
generator j is a maximal-period MLCG with modulus mj 
and multiplier qj: 

s,,, = f,(Sj.i-1) = a,+1 MOD m,. (10) 

We combine these generators as suggested by equation 
(8) with d = m, - 1. Generator j has period m, - 1 
where mj is prime. Therefore, every p, = m, - 1 must be 
even and so an upper bound for p is given by: 

p I II:=1 (m, - 11 
2’-’ (11) 

and this bound is attained only when all values of 
(m, - 1)/2 are relatively prime. During a full cycle, 
generator 1 takes each value 1, . , m, - 1 only once. 
Thus, provided that generator 1 is good enough, sl., - 1 
may be considered as a uniform discrete variate be- 
tween 0 and m, - 2, in the sense of eq. (7). In the rest 
of this section, we suppose that s,,,, . , sl,i are inde- 
pendent random variables with s,,, uniform on (1, . . . , 
ml - 11. According to Lemma 1, 

Z, = (i (-l)‘-‘s,,,)MODlm, - 1) (12) 

is as a uniform discrete random variate between 0 and 
ml - 2 and 

u. = 
’ i 

Zh if Z, > 0 
(ml - II/m, if Z, = 0 

is therefore a good approximation of a continuous uni- 
form (0, 1) random variable for m, large enough. 

Only Z, needs to be uniform for Lemma 1 to hold. 
But in practice, Z1 is not exactly uniform. Therefore, it 
is (heuristically) more appealing to have all the Z; as 
uniform as possible. We keep that before us in the se- 
lection of individual MLCGs in Section 5. 

3. PORTABLE IMPLEMENTATIONS 
Portable generators, implementable in a high level lan- 
guage and producing the same results on any machine 
with sufficient word length, are highly desirable in 
most practical situations [2, 19, 211. Bratley et al. [Z, 
6.5.21, inspired by Wichmann and Hill [21], propose an 
efficient way to implement a portable MLCG with mod- 
ulus m and multiplier a using only integers f.rom -m to 
+m, when a’ < m (i.e., using only b-bit integer arithme- 
tic if m < 2b-‘). We present that technique and explain 
how to use it to implement our combined generators. 

Consider a MLCG defined by 

So := f(Si-1) = as,-*MOD m 

where a2 < m. Define 

(14) 

q := Lm/aJ (15) 

r := m MOD a (16) 

so that m is decomposed as m = aq + r where r c a. For 
0 < s < m, one has 

as MOD m = (as - Ls/qJm)MOD m 

= (as - Ls/qJ(aq + r))MOD m 
(17) 

= (a(s - Ls/qJq) - Ls/qJr)MOD m 

= (a(s MOD q) - Ls/qJr)MOD m. 

When computing (14) using (17), every interrnediate 
value (integer) during the computation will remain be- 
tween -m and +m. More specifically, a(s MOD q) < aq 

5 m, Ls/qJr< L(aq + r)/qJr 5 ars a* < m and both 
terms are nonnegative, so their difference stays strictly 
between -m and +m. 
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Assuming that m, a, q and L- are global integer con- 
stants and that s is a global integer variable holding the 
current variate, (14) can be implemented as follows 
(using Pascal-like syntax): 

k := s DIV q; 
s . .= a * (s - k * q) - k * r; 
IF s<O THEN s := s+m 

To obtain a value u between 0 and 1, add the 
statement 

u . .= s * h 

where h is a precomputed constant equal to l/m. This 
requires only one integer division and four multiplica- 
tions, which is much more efficient than most other 
previously proposed implementations (see [12, 14, 17, 

181). 
The above technique can be used for each individual 

MLCG in the implementing of a combined generator as 
proposed in Section 2, when each of the individual 
generators satisfies a2 < tn. However, additional care 
must be taken to avoid overflow while computing the 
sum in eq. (12). The sequence of Pascal statements in 
Figure 1 implements equations (10, 12-13) using only 
integers between -m and m. The constant L represents 
thenumberIofMLCGs;m[j],a[j],q[jl,r[j) and 
s [ j ] are the constants and the current variate associ- 
ated with the MLCG number j, and u denotes the Uni- 
form (0, 1) value that comes out (SNGL converts from 
INTEGERtoREAL). 

VAR 
IJ : REAL! 
;, x. z : INTEGER: 
a. a. q. r. 8 : ARRAY [l..Ll OF INTEGER: 

BEGIN 
2 := 0. 
FOR j 1= 1 TO L DO 

BEGIN 
k := s[jl DIV qfjl; 
sfjl := a[j] * (s[j] - k * qfjl) - k * r[jl; 
IF s[j] Z 0 THEN s[jl := s[jl + m[jl; 
IF ODD (i) THEN .* 

z := (Z - m[ll + 1) + efjl 
ELSE 

Z := Z - s[jl; 
IF Z c 1 THEN 2 := Z + m[ll - 1 
END; 

U := SNGL (Z) ,' SNGL (mtll) 
END 

FIGURE 1. General Code for a Portable Combined Generator 

Obviously, the “general” code is not very efficient, it 
could be optimized for each particular implementation. 
We use two examples in the next section. On machines 
where double precision is available, a simplified coding 
scheme can be used, as shown in Figure 2. It assumes 
that the arrays m, a and s and the variable z are stored 
in floating point with at least flog,(c&r aj(mj - 1))l bits 
of precision for the mantissa. The function DMOD(x, y) is 

VAR 
u, z : DOUBLE 
j : INTEGER; 
m, a, s : ARRAY Cl.. Ll OF DOUBLE: 
. . . 

BEGIN 
2 .= 0 0. 
FOi i I='1 TO L DO 

BEGIN 
sljl := DBLE (DMOD caCj1 * scjl. mfjl)); 
IF ODD (j) THEN Z := 2 + s[jl ELSE 2 := Z - s[jl; 
END; 

WHILE Z < 0.5 DO 2 := Z + (m[l] - 1); 
WHILE 2 > (m[l] - 0.6) DO Z := Z - (rn[ll - 1); 
U := 2 / m[ll 
END 

FIGURE 2. A More Direct Coding Scheme Using Double Precision 

assumed to yield x MOD y and DBLE converts to double 
precision. This coding scheme might be slightly faster 
on some computers having a floating point accelerator. 

4. SEARCHING FOR GOOD MULTIPLIERS 
Multidimensional uniformity of the k-tuples of succes- 
sive numbers is the ultimate measure of goodness of 
pseudo-random number generators. In practice, obtain- 
ing k-dimensional uniformity for every positive integer 
k is impossible, but good uniformity for small values of 
k is a must. Many theoretical tests to measure the uni- 
formity for a given LCG and a given k have been sug- 
gested: most of these tests are based on the fact that 
all k-tuples Pi,k = @I,+, , . . . , Ui+k) are arranged on par- 
allel hyperplanes and form a lattice structure in the 
k-dimensional unit hypercube. 

The Spectral Test [Z, 4, 5, 111 determines the maximal 
distance &(m, a) between adjacent parallel hyper- 
planes, the maximum being taken over all families of 
parallel hyperplanes that cover all the points Pi,k. The 
smaller that maximal distance, the better the generator 
is, since this implies smaller empty “slices” in the hy- 
percube. However, there is a theoretical lower bound 
d:(m) on &(m, a), that is given here for 2 5 k 5 8 (see 
[ll, p. 1051): 

d&n, a) 5: dk* (m) = (18) 

Normalizing dk(m, a) as in [9], we obtain the figure of 
merit 

that lies between 0 and 1. An algorithm to compute 
dk(m, a) was proposed by Coveyou and MacPherson [4] 
and later improved by Knuth [ll] and Dieter [5]. The 
algorithm is described in [ll, pp. 98-1001. 
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A second measure of quality, suggested by Marsaglia 
[13], is the minimal number ojparallel hyperplanes cover- 
ing all the points P,,k. This number should be high, 
otherwise large regions will be devoid of points. How- 
ever, as Knuth [ll, p. 921 points out, this measure, 
although strongly related to dk(m, a), is “biased by how 
nearly the slope of the hyperplanes matches the coordi- 
nate alxes,” and is then a less significant criterion. 

Niederreiter [17] has shown how to analyse LCGs in 
terms of their discrepancy. The discrepancy in k dimen- 
sions can be defined [ll, 171 as the maximum absolute 
difference between the expected number and the ob- 
served number of points Pi,k in a k-dimensional hyper- 
rectangular box aligned with the axes, the maximum 
being taken over all such boxes. The discrepancy is 
defined for any subsequence of length N 5 p, where p is 
the period. It can be shown [ll] that any LCG that 
performs well in the Spectral Test will have rather 
small discrepancy for large enough N (Knuth suggests 
N > &(log m)‘+‘). The measure of discrepancy detects 
the worst cases only with regard to boxes that are 
aligned with the axes; it can change significantly when 
the points are rotated, unlike the result of the (rotation- 
ally invariant) Spectral Test. This suggests that the lat- 
ter test should be considered as more meaningful. No 
algorithm exists to compute the discrepancy; only 
expressions giving lower and upper bounds are known 
and even these bounds cannot be computed in general. 

Other measures of goodness have been suggested, 
such as the lattice test, the minimal distance between 
any two points, measures of packing the lattice with 
spheres, bounds on the serial correlation, and so on (see 
[l, 91). However, as suggested in [9, 111, the results of 
these tests are either strongly correlated or dominated 
by those of the Spectral Test, which appears to be the 
most powerful test known for LCGs. Borosh and Nied- 
erreiter [l] have found “optimal” multipliers for moduli 
Z”, 6 1~ n 5 35. The “optimality” criterion is simply a 
measure of uniformity of the empirical distribution of 
the pairs (Ui+l, Ui+z) over the unit square. 

We applied the Spectral Test for some values of m to 
find, among all multipliers a 5 & that are primitive 
elements modulo m, those that perform well in every 
dimension k between 2 and 6. More specifically, we 
found those a for which the worst case measure 

def 
M&L a) = 2z& Sk@, a) PJI 

is the largest (the closest to unity). A summary of our 
results is given in Table I. The first and seventh values 
of m (2147483647 and 32749) are the largest primes 
smaller than 231 and 215 respectively (that can be repre- 
sented in two’s-complement 32-bit and 16-bit integer 
arithmetic respectively). The second to sixth. values are 
those for which su~~~~iiiM~(rrz, a) is the largest among 
the 50 largest primes smaller than 231 and thLe last five 
are those for which supaS~M6(m, a) is the largest 
among the 100 largest primes smaller than 215. 

For each m, the first multiplier a in Table I is the best 
according to MB(m, a), among those for whic:h a 5 &. 

For m = 2147483647, the multipliers a = 742938285 
and a = 950706376 are the two best overall according to 
[9]; a = 16807 has been suggested by Lewis et al. [12] 
and is also recommended in [2, 191; a = 630360016 is 
used in the SIMSCRIPT II.5 language and is recom- 
mended in [14]. For m = 32749, a = 219 is the best 
multiplier overall, but is larger than &. However, the 
last five combinations of m and a given in Table I, 
have a better figure of merit. In general, the constraint 
a 5 X& is not costly in terms of the best achievable 
value of MG(m, a). 

For a simple and easily implementable MLCG on a 
32-bit computer, we suggest m = 2147483399 and a = 
40692. On a 16-bit computer, we hesitate to recom- 
mend the general use of any simple MLCG with 
m < 2”, since the lattice structure is too coarse and the 
period is too short. Combined generators offer much 
longer periods and we advocate them for both 16-bit 
and 32-bit computers. 

TABLE I. Computed Values of S&z, a) and M&z, a) for the Spectral Test. 

2147483647 39373 
2147483647 742938285 
2147483647 950706376 
2147483647 16807 
2147483647 630360016 
2147483563 40014 
2147483399 40692 
214748281 i 41546 
2147462601 42024 
2147482739 45742 

32749 162 
32749 219 
32363 157 
32143 160 
32119 172 
31727 146 
31657 142 

.7907 

.a673 

.a574 

.3375 

.a035 

.a172 

.a343 

.a439 

.9186 

.8331 

.9299 

.a122 

.8305 

.a931 

.7628 

.7427 

.7549 

.8607 

.a985 

.4412 

.4317 

.a357 

.ai 80 

.7870 

.aiii 

.a512 

.7959 

.7930 

.a507 

.7545 

.7195 

.7219 

.7625 

.7866 

.a627 

.a692 

.5752 

.7833 

.8&l 

.a112 

.a568 

.7833 

.7100 

.7263 

.a270 

.8067 

.7352 

.7266 

.a244 

.7580 .7545 

.6319 .a341 

.a337 .a274 

.7361 .6454 

.a021 .5700 

.a281 .aoai 

.8912 .a181 

.8085 .a206 

.7830 .8101 

.a201 .7991 

.6581 .7628 

.7180 .7628 

.7818 .7885 

.7279 .7774 

.7763 .7401 

.7579 .72aa 

.7853 .7794 

.7545 

.a319 

.a274 

.3375 

.4317 

.7885 

.8051 

.7870 

.7830 

.7833 

.6581 

.7180 

.7818 

.7279 

.7195 

.7427 
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TABLE II. Theoretical Lower Bounds on d&z, a) 

23’ = 2147483648 .0000201 .000690 .00391 .01105 .02157 
2147482739 .0000201 .000690 .00391 .01105 .02157 

2’5 = 32768 .0051409 .027840 .06251 .10154 .13700 
31657 .0052303. .028163 .06304 .10223 .13777 

The values of the theoretical lower bounds on 
&(m, a) given by eq. (18) appear in Table II for four 
values of m. These values give a better insight about 
the significance of the results of Table I. Notice that 
for close values of m, these bounds are about the same. 
For example, for m = 2” = 2147483648 and m = 
2147482739, the figures shown in Table II are exactly 
the same. This means that for all values of m between 
these two, the numbers Sk(m, a) and Ms(m, a) have 
about the same significance. For values of m near 215, the 
difference is more perceptible, but still relatively small. 

5. TWO NEW GENERATORS 
From the results of the previous sections, we can now 
propose two new combined generators. For a b-bit word 
length, we want m, < 2b-’ and a, I 4 for every j, so 
that every individual generator can be easily imple- 
mented in a portable and efficient way using the tech- 
nique proposed in [2, 211. 

For 32-bit computers, we suggest 1= 2, m, = 
2147483563, a, = 40014, m2 = 2147483399 andu, = 
40692. These two individual MLCGs are excellent ac- 
cording to the Spectral Test (see Table I). Furthermore, 

(ml - 1)/2 = 3 X 7 X 631 X 81031 and (m2 - 1)/2 = 
19 X 31 X 1019 X 1789 are relatively prime and the 
combined generator has period p = (m, - l)(mz - 1)/2 
= 2.30584 X 101'. 

For Is-bit computers, we suggest I = 3 and pick the 
three MLCGs defined by ml = 32363, a, = 157, mZ = 
31727, u2 = 146, m3 = 31657 and u3 = 142. They all 
perform very well in the Spectral Test and the values 
of (ml - 1)/2 = 11 X 1471, (m2 - 1)/2 = 29 X 547 and 
(m3 - 1)/2 = 2 X 2 X 3 X 1319 are relatively prime. 
The period of the combined generator is then p = 
(ml - l)(mz - l)(ma - 1)/4 = 8.12544 X lOI’. The gener- 
ator with m = 32143 and a = 160 is not selected despite 
its good performance in the Spectral Test since 32142/2 
has 11 as a common factor with (ml - 1)/2. 

The values of 4 and r for each individual MLCG are 
given in Table III. 

TABLE III. The Values of m, a, 9 and r for the Five 
Retained MLCGs 

2147483563 40014 53668 12211 
2147483399 40692 52774 3791 

32363 157 206 21 
31727 146 217 45 
31657 142 222 133 

Figure 3 gives a Pascal function implementing the 
first proposed combined generator, using an optimized 
version of the code given in Figure 1. It works as long 
as the machine can represent all integers in the range 
[-2= + 85, 2= - 851. The integer variables s 1 and s2 
are global and hold the current variates. Before the first 
call to Uniform, they must be initialized to values in 
the range [l, 21474835621 and [l, 21474833981 respec- 
tively. Notice that the function will never return 0.0 or 
1.0, as long as REAL variables have at least 23-bit man- 
tissa (this is the case for most 32-bit machines). In the 
second edition of their book, Bratley, Fox and Schrage 
[2] adopt this generator. They provide a FORTRAN im- 
plementation and specific seeds to generate disjoint 
streams. Such specific seeds, spaced say 2d values apart 
in the sequence, can be computed as follows: for each 
of the two MLCG components, (i) choose any seed in 
the proper range; (ii) precompute uzd MOD m, where a 
and m are the constants defining this MLCG; and (iii) 
use eq. (5). An efficient way to precompute uzd MOD m 
is to start with a and square it d times modulo m. 
Notice that this squaring, as well as the product in 
eq. (5) must be done in extended precision arithmetic 
(2 62 bits). 

FUNCTION Uniform : REAL; 
VAR 

2, k : INTEGER; 
BEGIN 
k := sl DIV 53668; 
sl := 40014 * (al - k * 63668) - k * 12211; 
IF sl < 0 THEN sl := sl + 2147483563; 

k := a2 DIV 52774; 
s2 := 40692 * (s2 - k * 52774) - k * 3791; 
XF s2 < 0 THEN s2 := s2 + 2147483399; 

2 := sl - 82; 
IF Z < 1 THEN 2 := 2 + 2147483662; 

7Jniform := 2 * 4.656613E-10 
END 

FIGURE 3. A Portable Generator for 32.bit Computers 

Figure 4 gives a portable code for the other proposed 
combined generator for 16-bit computers. It assumes 
that integers in the range [-32363, 323631 are well rep- 
resented. The (global) integer variables s 1, s 2 and s 3 
must be initialized to values in the range [l, 323621, 
[l, 317261 and [l, 316561 respectively. 

Wichmann and Hill [21] have proposed a different 
portable combined generator, for 16-bit computers. It 
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generates three Uniform (0, 1) values using three “inde- 
pendent” MLCGs, and takes the sum modulo one. The 
three individual MLCGs have modulus 30269, 30307 
and 30323 and multipliers 171, 172 and 170 respec- 
tively. Their MG(a, m) values are .1830, .6228 and .4639 
respeclively, which is rather low compared to the 
MLCG.s proposed here. According to Lemma 2, the gen- 
erator proposed in [21] has period p = 6.95 X 1O1’ 
instead of p > 2.78 X 1Ol3 as claimed. 

FUNCTION Uniform : REAL: 
VAR 

2.k : INTEGER; ,‘ 
BEGIN 
k := sl DIV 206; 
Sl := 157 * (St. - k*206) -.k*21; ,n 
IF sl < 0 THEN al :" st + 32363; "' 

k := a2 DXV 217; b 
s2 := 148 * (~2 - k * 217) - k * ,45; 
IF s2 < 0 THEN s2 := $2 +.3P7W; . nl: 

k := 83 DIV 222; , 
a3 := 142 * (93 - k * 222) i:k *.JZi?~;~~:~~ 
IF s3 < 0 THEN s3 := 83 + 31@57; ..~ 

2 := si - s2; / ,, 
IF Z > 706 THEN Z := Z - 32362; 
2 := 2 + 93: 
IF 2 Z 1 THEN 2 := 2 + 32362; ,. 

Uniform := Z * 3.0899E-5 
END 

FIGURE 4. A Portable Generator for l6-bit Computers 

As proposed here, the combinations are performed in 
integer arithmetic. In [21], the values are transformed 
into reals between 0 and 1 before being combined. 
Combination in integer arithmetic is faster, and is also 
advantageous when one uses directly the integer Z, in- 
stead of the floating point number t.& (for example, 
when generating uniform random integers over an arbi- 
trary interval; see [2], section 6.7.1). On the other hand, 
for the Is-bit generator proposed here, the number of 
possib1.e output values is only 32362 (the number of 
possib1.e values of Z,); for the generator proposed in [21], 
that number depends on the floating point representa- 
tion and is generally much higher. 

6. EMPIRICAL TESTING 
The two proposed combined generators and one simple 
MLCG have been submitted to a comprehensive battery 
of statistical tests described in Knuth [ll, pp. 59-731. 
Each test produces a statistic that, under the null hy- 
pothesis Ho that the generator is good, has a known 
theoretical probability distribution. Furthermore, every 
test has been repeated N times and the empirical distri- 
bution of the values of the statistics has been com- 
pared to the theoretical distribution using the classical 
Kolmo,gorov-Smirnov (KS) test. Thus the final result 
is the value s of a KS statistic S. A generator fails the 
test if the observed descriptive level 6 = Pr(S 5 s j Ho) is 
“too small.” 

We performed 21 different tests on the three genera- 
tors. They are described below using the notation of 

Knuth [ll] for their parameters. Here, II denotes the 
number of observations during a given run and N de- 
notes the number of runs. These tests involve billions 
of pseudo-random numbers and took more than 200 
hours of CPU time on a VAX-11/780. 

(1) 

(4 

(3) 

(4) 

(5) 

(‘3) 

(7) 

(81 

(9) 
(10) 
(11) 
(12) 
(13) 

(14) 

(15) 
(16) 
(17) 
WI 

(19) 

WV 

(21) 

Equidistribution test, using chi-square, d = 64, 
II = 1000, N = 10000. 
Equidistribution test, using chi-square, d = 256, 
n = 10000, N = 10000. 
Serial test with pairs (2-dimensional), d q = 64, 
n = 100000, N = 1000. 
Serial test with triplets (3-dimensional), d = 16, 
n = 100000, N = 1000. 
Serial test with quadruplets (4-dimensional), d = 8, 
n = 100000, N = 1000. 
Gap test, (Y = 0, p = .05, t = 15, n = 10000, 
N = 1000. 
Gap test, (Y = .95, p = 1, t = 15, n = 10000, 
N = 1000. 
Gap test, (Y = %, fi = %, t = 10, n = 10000, 
N = 1000. 
Poker test, k = 4, d = 4, n = 10000, N = 1000. 
Poker test, k = 6, d = 4, n = 10000, N = 1000. 
Poker test, k = 6, d = 8, n = 10000, N = 1000. 
Poker test, k = 8, d = 16, n = 10000, N = 1000. 
Coupon’s collector test, d = 5, t = 25, n =: 10000, 
N = 1000. 
Coupon’s collector test, d = 10, t = 40, n = 10000, 
N = 1000. 
Permutation test, t = 3, n = 10000, N = 1000. 
Permutation test, t = 5, n = 10000, N = 1000. 
Runs-up test, n = 100000, N = 1000. 
Maximum-of-f test, t = 8, d = 128, n = 10000, 
N = 1000. 
Collision test, 6 dimensions, d = 8, n = 20000, 
N = 100. 
Collision test, 10 dimensions, d = 4, n = .20000, 
N = 100. 
Collision test, 20 dimensions, d = 2, n = .20000, 
N = 100. 

The results of the tests appear in Table IV, where 6, 
and & represent the observed value of 6 for the first (for 
32-bit) and second (for 16-bit) proposed combined gen- 
erators respectively. & is the observed value of 6 for the 
simple MLCG with modulus m = 2147483399 and mul- 
tiplier a = 40692 suggested in Section 4. 

The initial seeds for each test were sl = 12345 and 
s2 = 67890 for the first generator; sl = 12, s2 = 23 and 
s3 = 34 for the second generator; and SI = 12345 for 
the third generator. We arbitrarily declare as “suspects” 
the values of 6 smaller than 0.05. These low values, 
marked with a * superscript in Table IV, could have 
been produced by chance (it should occur 5 percent of 
the time under Ho) or may indicate flaws in the genera- 
tors. To probe further, we repeated those tests that pro- 
duced the “suspect” values, using different (disjoint) 
random number streams. To guarantee that the streams 
were disjoint, we used as starting seeds the final values 
at the end of the corresponding “first trial” tests. The 
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(a) TheMLCGwithm =23'-1 anda =16607. 

0.0 ,001 

(b) TheMLCGwith m =2147463399and a =40692. 

(c) The proposed combined generator. 

FIGURE 5. A Thin Slice of the Plot of Output Pairs for Three 32-bit 
Generators 

results of these “second trials” appear in Table V. 
The combined 32-bit generator produced no suspect 

value. For the combined 16-bit generator, the new 
value of d is no more suspect. The result of test 13 
(coupon’s collector) for the 32-bit MLCG is still suspect. 
The MLCG also had 3 suspect values on the first trials, 
compared to 0 and 1 respectively for the combined gen- 
erators. In summary, we conclude that the empirical 
tests support the latter. 

Figure 5 gives a partial graphical illustration of the 
two-dimensional behavior of three generators. For each 
of the three plots, five million pairs of consecutive 

numbers were generated and placed in the unit square. 
A thin slice of the surface of the square, .OOl wide by 
1.0 high, was then cut on its left side and stretched out 
horizontally. Thus, each part of Figure 4 contains only 
the pairs (Ui+i , LIi+I) such that LI;+i < .OOl, (i.e., approx- 
imately 5000 points). 

In Figure 5, Box (a) shows the behavior of the often 
recommended MLCG with m = 23’ - 1 and a = 16807. 
The lattice structure is quite clear. It looks a little bet- 
ter in Box (b), which shows the behavior of the MLCG 

TABLE IV. Results of the Empirical Tests 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

10. 
11. 
12. 
13. 
14. 
15. 
16. 
17. 
16. 
19. 
20. 
21. 

‘(smaller than .0.5) 

.0961 .1920 .0510 

.7984 .6096 .0582 

.7388 .6461 .0071' 

.4399 .6507 .7647 

.7530 .6466 .9414 

.8818 .1243 .0479 

.0751 .3509 .7794 

.1881 .9699 ‘7275 

.1879 .1898 .4054 

.6358 .6920 .6765 

.3925 .3960 .3645 

.3395 .4591 .3491 

.9390 .1945 .0255 

.4053 .2914 .4543 

.8659 .9357 .2557 

.3516 .2503 .0640 

.1775 .9895 .0930 

.8703 .0252' .7532 

.9341 .4382 .1216 

.2101 .8435 .7369 

.lOlQ .2178 .4633 

(continued on p. 774) 
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L’Ecuyer (continued from p. 749) 

TABLE V. Results of the “Second Trial” Tests 

Combined 16-bit 18. .0252 4139 
32-bit MLCG 3. .0071 .1098 
32-bit MLCG 6. .0479 .1967 
32&t MLCG 13. .0255 .0228 

with m = 2147483399 and a = 40692. Box (c) is the 
output from the proposed 32-bit combined generator: 
No lattice structure is apparent. These graphics are just 
more empirical evidence supporting the combination. 
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