
TECHNICAL 
CORRESPONDENCE 
T 

his correspondence is moti- 
vated by two articles in Com- 
munications, one of them 
proposing an "industry stan- 
dard" random number  gen- 
erator [10], the other de- 

scribing machine language 
implementations of that generator 
[2]. In  the first article, under  the title 
"Random number  generators: good 
ones are hard to find," Park and 
Miller confine their discussion to 
congruential  generators and advo- 
cate the generator xn = 
16807xn-~ mod 2:31 - 1 as the "good 
one," citing some 16-bit generators 
or the notorious 32-bit RANDU for 
comparison as the "bad one." 

Such is the impact of Communica- 
tions, with its wide readership, that 
numerous  people have the impres- 
sion that xn = 16807 mod 231 - 1 is 
the only good random number  gen- 
e r a t o r - t h e  rest are bad. 

The principal points I want to 
make are: 

• The  congruential  generator x, = 
16807xn_1mod 2:31 - 1 is a good 
generator, but not a great generator. 
There  are many more promising 
ones. 
• The redeeming feature of the gen- 
erator is the closeness of its modulus 
to a power of 2, providing nice, but  
tricky, machine language implemen- 
tations. But for such implementa- 
tions, moduli 2:32 - 2 or 2:32 - 5 seem 
better choices. 
• If  double precision or other means 
for extended precision integer arith- 
metic is to be used, there are many 
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choices better than 2:31 - 1 for the 
modulus of the generator. 
• Most congruential  generators work 
quite well for small simulations, but  
their periods are far too short for 
modern  needs and the tendency is 
toward other kinds of generators 
with extremely long periods. 

• If  a generator is to be adopted as 
an "industry standard," there is no 
consensus that it should be a con- 
gruential generator and far from a 
consensus that it should be Xn---- 
16807Xn-1 mod 231 - 1. 

Residue systems 
Most modern  CPU's treat integers 
as 16- or 32-bit words. Examples with 
strings of 16 or 32 bits are tedious 
and difficult to follow, so we will as- 
sume a simple CPU with integers of 4 
bits. The  ideas readily extend to 16-, 
32- or even the anticipated 64-bit 
CPU's. 

8o, assume a two's-complement 
CPU with integer words of 4 bits, and 
thus there are 16 possible bit pat- 
terns. For some applications it is use- 
ful to use this set of residues to iden- 
tify bit patterns, the least-positive 
residue (LPR) system: 

0000 0001 0010 0011 0100 0101 0110 0111 
0 1 2 3 4 5 6 7 

1000 1001 1010 1011 1100 1101 1110 1111 
8 9 10 11 12 13 14 15 

Such a system might be used inter- 
nally, for example, for designating 
memory locations. Many high-level 
language implementations use the 
analogue of the following set of rep- 
resentations, the least-absolute resi- 
due (LAR) system: 

0000 0001 0010 0011 0100 0101 0110 0111 
0 1 2 3 4 5 6 7 

1000 1001 1010 1011 1100 1101 1110 1111 
- 8  - 7  - 6  - 5  - 4  - 3  - 2  - 1  
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It is important  to note that the CPU 
doesn't  "know" what residue system 
is intended;  it is wired to produce a 
double-word bit pattern for arithme- 
tic operations on pairs of one-word 
integer bit patterns. Addition or 
multiplication of two inl:egers pro- 
duces a double word pattern with the 
rightmost word usually considered 
the result. Thus  multiplying 010l by 
1001 produces the double work 
00101011, with the rightmost word 
the "answer." This is interpreted in 
the LPR system as 5 × 9 = 13, which 
is ordinary arithmetic modulo 16, 
while in the LAR system this is inter- 
preted as 5 × - 7  = - 3 ,  a~gain arith- 
metic modulo 16, but using least ab- 
solute residues. Addition of two 
integer words works in a :dmilar way 
- - a  double word is formed with the 
rightmost word taken as the "an- 
swer." Thus  adding 1100 to 1101 
produces 0001 1001 with the right- 
most word 1001 taken as the answer. 
In  the LPR system this is interpreted 
as 12 + 13 := 9, while the LAR inter- 
pretation is ( -4 )  + ( -3 )  =: - 7 ;  in ei- 
ther case, the residue of 24 is appro- 
priate for that particular residue 
system. Results are similar for mod- 
ern 32-bit (or 16-bit) CPU's: integer 
arithmetic produces the bit patterns 
consistent with arithmetic modulo 
232 (or 216), with interpretation in a 
particular residue system left to the 
user. 

Note that the default settings of 
some compilers call fo:c "integer 
overflow" messages when the sum or 
product  of apparently po,'.itive num- 
bers produces a negative number ,  
and program switches may have to be 
set to prevent interrupts. No such 
problems occur with machine lan- 
guage instructions, and the pro- 
grammer  may exploit the way the 
instructions are "wired," free to use 
whatever residue system he chooses 
- - lease  absolute, least positive or, as 
we shall see in the following, some 
other interpretation of the way bit 
patterns are produced and identi- 
fied. 

Applications 
As was poinred out in Communicat ions  

in 1968 [5], extremely fast imple- 
mentations of congruential  random 
number  generators result from ex- 

ploiting the modulo 232 arithmetic 
inherent  in two's complement CPU's. 
Thus  the single Fortran instruction 
I = 69069*• or Pascal I := 69069*• 
will cause the current  (signed) ran- 
dom integer I to be replaced by the 
next element of the sequence gener- 
ated by xn = 69069"x,_1 mod 232. 
This is the system generator for 
Vax's and part of the combination 
generator in the widely used McGill 
Super Duper  generator for IBM 
mainframes. Points in higher dimen- 
sions with coordinates from the 
69069 generator  fall on a lattice, as 
must those of all congruential  gener- 
ators [4,6], but  some lattices are bet- 
ter than others, and 69069 was cho- 
sen for its good lattices. It should be 
noted that the lattices of the pro- 
posed "industry standard" x, = 
16807xn-1 mod 231 - 1 are not very 
good ones; those of most any "ran- 
domly" chosen multiplier such as 
314159269 are much better for that 
modulus. 

MOdUlUS 2 s l  - 1 VS. M O d U l U S  232  - 2 

The generator advocated by Park 
and Miller [10] as a "minimal stan- 
dard" random number  generator is 
the congruential  generator xn = 
16807x,-1 rood p for the prime mod- 
ulus p = 231 - 1, or, more generally, 
xn = axn-1 mod p for any primitive 
root a of p. Arithmetic modulo p is 
not easily implemented.  Park and 
Miller suggest using double precision 
or use of computers able to handle 
integers of up to 50 bits or fairly 
elaborate programs that perform 
extended-precision arithmetic by 
breaking integers into parts then 
doing arithmetic on, before combin- 
ing, the parts. But, there are more 
desirable prime moduli for ex- 
tended-precision implementations. 
The  closeness of 231 - 1 to a power 
of 2 is its redeeming (and damning) 
feature, fully exploitable only 
through machine language imple- 
mentations. 

We now describe a method for 
exploiting that feature through inte- 
ger arithmetic. A previous old, as 
well as a recent new article in the 
Communicat ions  have discussed such 
implementations: Payne, Rabung 
and Bogyo [11] for IBM 360s in 1969 
and Carta in 1990 [2] for unspecified 

CPU's that seem to do integer arith- 
metic with 31-bit registers, a variety 
unknown to us. Our  new proposal 
has several advantages: it leads to 
faster and easier implementations 
and it produces both positive and 
negative random integers for high- 
level language use. 

We will use modulus 232 - 2  
rather than 231 - 1. Thus  our  gener- 
ator is x,, = 16807xn-1 mod 232 - 2, 
or, more generally, xn = axn-1 

mod 232 - 2  for any odd primitive 
root a of the prime 231 - 1. Let x be 
the current  random number ,  a 32-bit 
word. Form the product a x x in ad- 
jo in ing  32-bit words. Call it y. We 
may view y as y = 232t + b, where t is 
the integer in the top-half, and b the 
integer in the bottom-half of the two- 
word product. We want y modulo 
232 - 2. Writing y = 232t + b = 
t ( 2 3 z - 2 ) + b + 2 t  shows that y is 
congruent  to b + 2t modulo 232 - 2, 
and that is the basis of our  proce- 
dure. If  the two-word sum b + 2t 
does not extend into the top word 
and only requires one word, we have 
our  new random number  x; if it does 
extend into the top we must repeat 
the process. This may be described as 
a formal procedure, using top( ) and 
bot( ) to indicate the top and bottom 
halves of a two-word product  or sum: 

Form x ~ ax in adjoining 
32-bit registers 

Form x ~-- bot(x) + 2top(x) 
until  top(x) = 0 

The sum b + 2t should be formed as 
b + t + t, or perhaps by shifting t, to 
avoid multiplication. 

A machine language implementa- 
tion of this procedure will produce 
random 32-bit integers, with period 
231 - 2, from any initial 32-bit inte- 
ger (the seed) except 0 or 231 - 1. 
Most languages invoking the proce- 
dure will view the results as signed 
integers in the range -231 to 23[-1 
inclusive. Such an integer may be 
converted to a uniform number  on 
( -1 ,1)  by multiplying by the real 
2 -31 , but more rapidly in machine 
language by shifting and inserting 
the appropriate exponent.  Similar 
manipulat ions can produce a uni- 
form real on (0,1). 

Many simulation programs benefit 
from having signed random integers 
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or reals available directly, avoiding 
the cost of, say, convert ing a uniform 
U o n  (0,1) to a V o n  ( -  1,1) by means 
of  V =  2 U - 1 .  For  example,  the 
fastest methods for generat ing nor- 
mal and other  symmetric random 
variables may suffer a significant loss 
in average generat ion time if only 
positive, ra ther  than half-positive, 
half-negative r andom numbers  are 
available. 

The  case f o r  m o d u l u s  232 - -  5 

The  ability to provide,  th rough  ma- 
chine-language manipulat ions of  the 
top and bot tom words of  a two-word 
sum or  product ,  rap id  reductions for 
a modulus  near  232 naturally raises 
the question of  using the pr ime clos- 
est to 232. Tha t  pr ime is 232 - 5. We 
can make reductions modulo  232 - 5 
in a manner  similar to that for 232 - 
2, except that to the bottom we must 
add 5 times the top, the latter accom- 
plished th rough  a shift and an add. 

The  same arguments  apply for the 
pr ime modulus  232 - 5 .  To imple- 
ment  a genera tor  for  that modulus  
we need a primitive root. A good one 
is 69070. Thus,  for any 32-bit seed 
x0, except those represent ing 
0,1,2,3,4, and - 5 ,  the sequence xn = 
69070x~,_ l mod 232 -- 5 will have 
per iod 232 - 6 and will produce  ran- 
dom signed integers if it is imple- 
mented in a system that interprets  
integer bit pat terns as least-absolute 
residues of  232 and reduct ion mod-  
ulo 23z - 5 is effected by means of  a 
machine language rout ine that forms 
b + 5t until the new t vanishes, as de- 
scribed. The  six integers 0,1,2,3,4, 
and - 5  cannot a p p e a r - - a  drawback 
of  no significance in a set of  
2,147,483,643 positive and 
2,147,483,647 negative integers. 

Double Precision 
Implementations 
I f  speed is not  important ,  one may 
p rogram a congruential  genera tor  in 
double precision. In  doing so, one 
should choose modulus and multi- 
plier to satisfy as many of  these crite- 
ria as possible: long period,  few 
short -per iod subsequences, good lat- 
tice and good performance on statis- 
tical tests. Marsaglia [6] and Knuth 
[3] discuss the lattice structure of  
congruential  generators  and Knuth 

describes s tandard  tests of  random- 
ness. Marsaglia [7] describes more 
str ingent tests. 

With a pr ime modulus p the pe- 
r iod will be p -  1, so p should be 
made as large as possible, subject to 
the restriction that the primitive root  
a o f p  produce  a genera tor  with good 
lattice propert ies  and the product  ap 
not exceed 253 , to avoid loss of  bits in 
the generat ing process. One can usu- 
ally f ind good multipliers a with from 
14 to 20 bits, thus suggesting primes 
p of  some 33 to 39 bits. 

Periods of  subsequences of  con- 
gruential  sequences depend  on fac- 
tors of  p - 1, the period.  As long as 
one is free to choose p, subject to a 
few restrictions, one should consider 
those for which p - 1 has few factors. 
It always has 2 as a factor, of  course, 
and the fewest factors come from 
having (p - 1)/2 also a prime. Primes 
p such that (p - 1)/2 is also pr ime are 
called safeprimes. Here  is a list of  the 
safeprimes p closest to 2 i for i = 31 to 
40, together  with the least primitive 
root  for that p: 

231 - 6 9 ,  6; 232 + 91, 5; 233 - 9 ,  5; 
234 + 79, 5; 235 - 849, 7 

236 - 137,7;237 - 45,5;238 - 401,5; 
239 - 381, 5; 24o + 437, 6 

For  any of  these safeprimes, every 
odd power of  the listed least primi- 
tive root  is also a primitive root. This 
provides a plentiful supply of  full- 
per iod multipliers for those seeking 
good lattices. Simple methods for 
de termining  the lattice structure are 
in [6]. 

Other Generators 
Several o ther  kinds of  r andom num- 
ber  generators  have been developed,  
partly to overcome the problem of  
the relatively short  periods of  con- 
gruential  generators  in 32-bit ma- 
chines. Among  them are combina- 
tion generators,  lagged-Fibonacci 
generators,  congruential  generators  
with multiple lags and a new kind of  
generator ,  subtract-with-borrow [9], 
that is current ly considered one of  
the best of  all. I t  has simple ari thme- 
tic (subtraction) and astonishingly 
long periods, typically 250o to 218°°. A 
popular  descript ion is in Science News 
Nov. 9, 1991, and implementat ions 
are available on computer  networks. 

(Write me or  send emaih geo@ 
stat.fsu.edu) 

A recent survey article by Ander -  
son [1] describes all but the last of  
these, as does [7], which also de- 
scribes tests more  str ingent than the 
s tandard  ones for evaluating genera- 
tors. In addition, reference [8] ad- 
dresses the question of  an "industry 
s tandard" or  "universal" generator  
and suggests one that has been 
widely adopted;  its per iod is some 
2 1 4 4 "  

Summary 
Generators  using modulus 231 - 1  
are attractive only if they are imple- 
mented  in machine language, but  for 
such implementat ions the modulus 
232 -- 2 is preferable:  it has the same 
period,  provides simpler implemen- 
tations and produces  both positive 
and negative r andom numbers.  The  
pr ime 232 - 5 ,  closest to 232, also 
provides simple and fast machine 
language implementat ions,  both pos- 
itive and negative r andom integers 
and has a longer period.  

For  double precision or  o ther  ex- 
tended precision implementat ions,  
the modulus  p = 231 - 1 is a poor  
choice: it is relatively small and p - 1 
has far too many divisors. Larger  
primes provide longer  periods. Bet- 
ter are larger  safeprimes p among 
those listed. For  them, ( p -  1)/2 is 
also pr ime and thus half  of  the resi- 
dues of  p are primitive roots. Exam- 
ple: 16807 is a primitive root  of  the 
safeprime 238 - 401. The  genera tor  
xn-- 16807xn-1mod 2 3 8 -  401 can 
be implemented  in double precision 
with no loss of  bits and has per iod 
128 times as long as that of  the pro-  
posed "industry s tandard."  But any- 
one using a double precision imple- 
mentat ion of  such generators  would 
be better  served with one such as xn 
= 534059xn-1 - 4416Xn-2 mod p = 
231 - 69, which has per iod p2 _ 1, 
about  262 or  5 × 1018. 

While these arguments  raise ques- 
tions about  the suitability of  the 
congruential  genera tor  Xn = 
16807Xn-1 mod 2 sl - 1 as an indus- 
try s tandard,  a more  impor tant  ques- 
tion is: Should any generator be desig- 
nated a standard? 

There  is no question of  the need 
for precise rules for de termining  the 
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e lements  o f  a sequence  o f  supposed ly  
r a n d o m  numbers ,  to ensu re  that  
expe r imen t s  may  be ver i f ied  o r  be 
capable  of ,exact  dupl ica t ion  in a wide 
variety o f  compute rs .  Methods  such 
as those in [8] a re  d i rec ted  to that  
end.  

But  the  idea o f  an indus t ry  stan- 
d a r d  smacks o f  s tagnat ion and  self- 
satisfaction. In  us ing de terminis t ic  

me thods  to s imulate  r a n d o m n e s s  we 
are  all, as Von N e u m a n n  said "in a 
state o f  sin." Every  de te rminis t ic  
scheme for  p r o d u c i n g  r a n d o m n e s s  
must  have  appl icat ions  for  which it 
gives bad results. Only  the  collective 
expe r i ence  and  imagina t ion  o f  devel-  
opers  and  users  o f  r a n d o m  n u m b e r  
gene ra to r s  will lead to a be t te r  un-  
d e r s t a n d i n g  o f  what  those applica-  

tions are. Only  t h r o u g h  encour -  
a g i n g - r a t h e r  than  s t i f l i ng - -  
e x p e r i m e n t a t i o n  can we, as Shake-  
speare  u rged ,  "plate  sin with gold."  

George Marsaglia 
Department o f  Statistics 

The Florida State University 

Tallahassee, F L  

A 
A N O T H E R  T H S T  F O R  

R A I l I D O l l l N I - ' S i  

l t hough  the  need  for  tests o f  
p s e u d o - r a n d o m  n u m b e r  
gene ra to r s  (RNG's) has been  
deba ted  [10], somet imes  test- 
ing  proves  valuable.  

O n e  s imple  te~,;t is as fol- 
lows: Let  the  m i n i m u m  possible out-  
pu t  o f  a g iven R N G  be 1, and  the  
m a x i m u m  possible o u t p u t  be H.  

For  each o f  the  seeds 1 :-< s -< N, let 
the first n values o f  the  R N G  se- 
quence  s tar t ing with seed s be de-  
no ted  rsl, rs~ . . . . .  rsn. T h e  basic ques-  
t ion is: Fo r  what  i is rsi the  m a x i m u m  
o f  the  sequence  rs~, rs2 . . . . .  rsn ~. 

Let  N << n << H.  ]Let Ms = 
max(rsi:l <-i  <-n),  and  let Is be the  
lowest i ndex  i such that  rsi = M s.  T h a t  
is Is is the index  o f  the  m a x i m u m  
value  for  seed s. 

Since n <~ H,  one  would  expec t  
the  Is values to be d is t r ibuted  uni-  
fo rmly  over  the  values 1 z_~ Is ~ n. In  

Figure 1. Press's linear 
congruen t i a l  me thods  

fact, this is a classical "balls and  urns"  
p rob lem:  each m a x i m u m  corre-  
sponds  to drawing ,  with replace-  
ment ,  one  o f  a set o f  balls n u m b e r e d  
1 to n f r o m  an urn.  

Since N << n, one  wou ld  expec t  
that  no ball (or value  o f  Is) would  be 
d r awn  m o r e  than  a few times. T h e  
probabil i ty  that  at least one  ball is 
d r awn  m o r e  than  k t imes may  be  
f o u n d  as follows: Let  Ak ,  i be the even t  
that  ball i is d r awn  no m o r e  than  k 
times. Let  Bk be the  even t  at least one  
ball is d r a w n  m o r e  than  k times. 

P[Bk] = P [ I A ]  ~/ ~ A 2  k~ • • • 

V"qAn] ~ ZjP["qAj] = n P [ T a l ]  

Now, P[~A1] = 1 - P[Az] = 
Y k=0(~V)p/(1 _ p)N- j  

where  (N) is the b inomial  coeff ic ient  
N! 

and  p = 1/n. 
j ! ( N  - j ) !  

So P[Bk] <-- n[1 -- Y~k=0(U)pl(1 -- p)U-j] 

F o r N  = 100 and  n = 105, calculat ion 
yields P[Ba0] -< 2.35 x 10 -25. 

In  English:  w h e n  us ing 100 d i f f e ren t  
seeds, the probabil i ty  that  the se- 
quence ' s  m a x i m u m  value  occurs  at 

suits on Press's quick l inear  con-  
g ruent ia l  m e t h o d s  [12] r e f e r  to Fig- 
u re  1. Fo r  results on  Park and  
Miller 's  l inear  congruen t i a l  m e t h o d  
re fe r  to F igure  2. No te  he re  that  Is = 
1311 occurs  97 times. 

T h e  probabi l i ty  o f  any Is o c c u r r i n g  
m o r e  than  96 t imes in a t ruly r a n d o m  
sequence  is less than  8.37 x 10 -344. 

A p p a r e n t l y  the re  is a serious flaw in 
the  Park-Mil ler  RNG.  

Stephen J. Sullivan 
Mathcom Inc. 

Lafayette, CO 

R e s p o n $ o  
O u r  1988 article in Communications 
[10] has p r o v e n  to be o f ten  cited, in 
p r in t  and  on  e lec t ronic  networks,  a 
t r ibute  in par t  to the  widesp read  
r eade r sh ip  o f  Communications. T h e r e  
are  f o u r  points  we want  to m a k e  rela- 
tive to o u r  article. We t r ied  to stress a 
r a n d o m - n u m b e r - g e n e r a t o r  philoso- 
phy o f  simplicity, portabi l i ty  and  effi- 
ciency. Consis tent  with this philoso- 
phy, we p re sen t ed  a par t icu lar  
e x a m p l e  o f  a L e h m e r  g e n e r a t o r  and  
advoca ted  it as a "min imal  s t andard . "  

1 
97 
1 
1 

Figure 2. Park and Mil ler 's 
l inear  congl ruent ia l  m e t h o d  

the  same index  Is in the sequence ,  for  
m o r e  than  10 d i f f e ren t  seeds, is 
- 2.35 x 10 -25. 

Fol lowing are  results o f  tests on 
several  publ i shed  RNGs,  us ing  N = 
100 and  N = 10000. Marsaglia 's  sub- 
t rac t -wi th-borrow g e n e r a t o r  [9]: 

x n = Xn- s -- Xn- r -- £ mod b, using 
b = 231 , r = 48, and s = 8: All values 
o f  I,  occu r r ed  exactly once.  For  re- 

To  de f ine  the  phrase  min imal  stan- 
da rd ,  in the  th i rd  p a r a g r a p h  we 
wrote  " . . .  this is the  g e n e r a t o r  that  
should  always be u s e d - - u n l e s s  one  
has access to a r a n d o m  n u m b e r  gen-  
e ra to r  known to be bet ter ."  At  an- 
o the r  po in t  we wrote  " . . .  this r ep re -  
sents a good  min imal  s t andard  
g e n e r a t o r  against  which all o the r  
r a n d o m  n u m b e r  gene ra to r s  c a n - -  
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and s h o u l d - - b e  judged ,"  and in the 
conclusion we wrote " . . .  if you are 
not a specialist in r andom number  
generat ion and do not want to be- 
come one, use the minimal stan- 
dard."  We nei ther  stated or  implied 
that this genera tor  should or would 
put  to rest the endless quest by spe- 
cialists for ever-better  r andom num- 
ber  generators.  

The  minimal s tandard  Lehmer  
genera tor  we advocated had a modu-  
lus of  m = 231 - 1 and a mult ipl ier  
o f a  = 16807. Relative to this particu- 
lar choice of  multiplier,  we wrote 
" . . .  if this paper  were to be written 
again in a few years it is quite possible 
that we would advocate a different  
mult ipl ier  . . . .  " We are now pre- 
pared  to do so. Tha t  is, we now advo- 
cate a = 48271 and, indeed,  have 
done so "officially" since July 1990. 
This new advocacy is consistent with 
the discussion on page 1198 of  [10]. 
The re  is nothing wrong with 16807; 
we now believe, however, that 48271 
is a little bet ter  (with q = 44488, r = 
3399). 

We have great  respect for the con- 
tr ibution made by the text Numerical 
Recipes [5]. The  no-nonsense, plain- 
speaking tone of  this text combined 
with the general  high quality of  the 
software it contains, has made it a 
valuable reference.  We say this de- 
spite the fact that the first edition 
had a relatively weak chapter  on ran- 
dom number  generation. We were 
pleased, therefore,  to find that this 
chapter  has been modif ied exten- 
sively in the recently published sec- 
ond edition, based in par t  on our  ar- 
ticle and recent work by Pierre 
L'Ecuyer. 

In  our  article, we failed to mention 
an impor tant  feature that all good 
random number  generators  should 
h a v e - - t h e  ability to generate  multi- 
ple streams of  r andom numbers.  
Space limitations prevent  us from 
providing justification for this state- 
ment  or  discussing how nicely Leh- 
mer  generators  are in general ,  and 
the minimal s tandard in particular,  
provide a mult is tream capability. For 
those interested, however, source 
code (in C or  Pascal) for a 256-stream 
implementat ion of  the a = 4 8 2 7 1  
genera tor  is available. The  file 
rngs.tar,  a Unix tar archive of  the 

source code, can be retr ieved in the 
pub directory of  the anonymous ftp 
account on ftp.cs.wm.edu (please use 
binary transfer  mode). 

Comments on Marsaglla 
Marsaglia has a long history of  signif- 
icant contributions to the field of  
r andom number  generation. We 
yield to his expert ise relative to the 
mathematical  theory of  Lehmer  gen- 
erators and do not refute any of  his 
math. We do, however, have a prob-  
lem with his in terpreta t ion of  our  
original article and his advocacy of  
register-level p rogramming  in this 
application. 

We never proposed  an "industry 
s tandard" r andom number  genera-  
tor. Indeed,  we only used this phrase 
once, in the first pa rag raph  of  our  
original article, and then only in the 
context of  characterizing the gener-  
ally bad state of  r andom number  
generators  used in practice. I f  some 
self-appointed experts  on the Inter-  
net have used our  original article as a 
justification for stifling addit ional  
research, then we are disappointed 
that the system is not working cor- 
rectly. If, instead Marsaglia thinks we 
are guilty of  trying to stifle addit ional  
research, then we hope he will now 
recognize that wasn't our  intent. 

I ndependen t  of  the statistical 
goodness of  the genera tor  advo- 
cated, we reject the register-level al- 
gor i thm descript ion and implemen- 
tation Marsaglia recommends.  We 
know from experience that this kind 
of  thinking and p rogramming  leads 
to nonportable ,  obscure random-  
number-genera t ion  source code 
which violates good software engi- 
neer ing principles and practices. 
The re  are applications for which as- 
sembly language p rogramming  is 
necessary; this isn't one of  them. 
Avoid the use of  any genera tor  that 
can't  be clearly, efficiently and porta-  
bly implemented  in a high-level lan- 
guage. 

To summarize,  there are five prin- 
ciple points Marsaglia makes. We 
generally agree with the first, third,  
and fourth.  We reject, however, the 
premise of  the second p o i n t - - t h e r e  
is no need or  justification for a 
"tricky machine language implemen- 
tation" of  the minimal s tandard gen- 

erator.  Relative to the fifth point, we 
rei terate our  advocacy of  a minimal 
s tandard and our  opposi t ion to the 
more  rigid, formal  notion of  an in- 
dustry s tandard  random number  
generator .  

Comments on Sullivan 
All r andom number  generat ion algo- 
r i thms are deterministic. Given that, 
one can always find statistical tests 
which even the best generators  will 
fail, perhaps  spectacularly. Tha t  is 
what Sullivan has done. We found 
the test results interesting and ini- 
tially puzzling. One of  us, however 
soon provided a mathematical  expla- 
nation which solved the puzzle, mak- 
ing it clear that, to some extent, the 
"failure" is a characteristic of  all Leh- 
mer  generators.  Moreover,  the "fail- 
ure" is so spectacular because Sulli- 
van uses the smallest possible initial 
seeds 1, 2 . . . .  N. Tha t  is, for exam- 
ple, if  instead N initial 31-bit integer 
seeds are selected at random (using, 
say another  genera tor  or  the state of  
the genera tor  at the end of  one test 
as the next  initial seed) the "Park- 
Miller RNG" will pass Sullivan's test 
without difficulty. 

The  kind of  weakness {dentified- 
by Sullivan's test would be most likely 
to be a potential  problem in repli- 
cated trials of  a stochastic experi-  
ment. This problem would arise in 
this application, however, only if one 
seeded each trial with the index of  
the trial or  in some other  simple de- 
terministic way. Reseeding in this 
way would be contrary to s tandard  
practice (which is to use the state of  
the genera tor  at the end of  one trial 
as the initial seed for the next trial), 
but  we concede that some naive users 
might  use the minimal s tandard gen- 
erator  in this way and, in that sense, 
Sullivan has identif ied a serious Leh- 
mer  genera tor  flaw. Unfortunately,  
space limitations prohibi t  us from 
discussing this further .  

The  second edition of  Numerical 
Recipes advocates the minimal stan- 
da rd  genera tor  in the sense we in- 
tended.  The  second edition also ad- 
vocates an enhancement  of  the 
genera tor  using a s tandard shuffling 
algori thm [ 12]. We generally endorse  
this enhancement .  Indeed,  we have 
verified that the (a = 16807 or  a = 
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48271) minimal standard generator 
with shuffling passes Sullivan's test as 
well as the other two generators he 
cites (one of which is no longer advo- 
cated in Numerical Recipes). 

Comments on Carta 
In  retrospect, when Carta's original 
article was first published [2], we 
should have commented on it. We 
didn't ,  however, so now is the time to 
do so. Although the article's title may 
suggest otherwise, the generator as 
implemented by Carta is not the min- 
imal standard; it isn't even a full- 
period generator. We know of no 
good reason to use Carta's generator. 
Moreover, for the reasons men- 
tioned previously, we reject the asso- 
ciated register-level programming he 
advocates as antithetic to our  random 
number  generation philosophy. 

Summary 
The  construction of a simple, port- 
able, efficient algorithm which can 
simulate randomness well enough to 
pass any reasonable statistical test 

remains a challenging activity today, 
just  as it was more than 40 years ago 
when Lehmer's original paper was 

"f irst  published. The  needs today, 
however, are more demanding.  
Computers can now easily run  simu- 
lations which consume thousands of 
random numbers  per second, 
thereby increasing the demand for 
generators with periods much larger 
than 231 . Moreover, the increased 
use of parallel machines has gener- 
ated a significant interest in parallel 
algorithms for random number  gen- 
eration. For all these reasons, ran- 
dom number  generation remains an 
active, albeit highly specialized, area 
of research. 

Given the dynamic nature  of the 
area, it is difficult for nonspecialists 
to make decisions about what gener- 
ator to use. "Give me something I can 
understand,  implement  and p o r t . . .  
it needn ' t  be state-of-the-art, just  
make sure it's reasonably good and 
efficient." Our  article and the associ- 
ated minimal standard generator was 
an attempt to respond to this request. 
Five years later, we see no need to 

IT'S TIME To 

96,000 acres  of 
irreplaceable." rain 
fores t  are  b u r n e d  
every day. 
The rain forest is 
t h e  w o r l d ' s  great-  
es t  p h a r m a c e u t i -  
cal  s t o r e h o u s e .  It 
p r o v i d e s  s o u r c e s  
for a q u a r t e r  o f  
t o d a y ' s  drugs; a n d  
m e d i c i n e s  a n d  
seventy percent of 
the plants found 
to have anticancer 
properties. 
This senseless 
destruction must { 

stop. NOW! 

National Arbor 
Day ~ ~  
Foun- ~ ~  
d a t i o n , ~ . ~  
the ~ ~  
world's ~ t  
l a rges t  
tree- " ..... ~ 
planting 
environmental 
organization, 
and support Rain 
Forest Rescue 
to help stop the 
destruction. 
You'd better call 
n O W .  

O The National 
Arbor Day Fc 

} i Ca l l  R a i n  F o r e s t  R e s c u e .  

I 1 -800 -255 -5500  

aher our  response other than to sug- 
gest the use of the multiplier a = 
48,'!71 in place of 16807. 

Stephen K. Park 
Keith W. Miller 

Paul K. Stockmeyer 
Dept. of Computer Science, The College 

of William & Mary 
Williamsburg, VA 
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