
TECHNICAL
CORRESPONDENCE
T

his correspondence is moti-
vated by two articles in Com-
munications, one of them
proposing an "industry stan-
dard" random number gen-
erator [10], the other de-

scribing machine language
implementations of that generator
[2]. In the first article, under the title
"Random number generators: good
ones are hard to find," Park and
Miller confine their discussion to
congruential generators and advo-
cate the generator xn =
16807xn-~ mod 2:31 - 1 as the "good
one," citing some 16-bit generators
or the notorious 32-bit RANDU for
comparison as the "bad one."

Such is the impact of Communica-
tions, with its wide readership, that
numerous people have the impres-
sion that xn = 16807 mod 231 - 1 is
the only good random number gen-
e r a t o r - t h e rest are bad.

The principal points I want to
make are:

• The congruential generator x, =
16807xn_1mod 2:31 - 1 is a good
generator, but not a great generator.
There are many more promising
ones.
• The redeeming feature of the gen-
erator is the closeness of its modulus
to a power of 2, providing nice, but
tricky, machine language implemen-
tations. But for such implementa-
tions, moduli 2:32 - 2 or 2:32 - 5 seem
better choices.
• If double precision or other means
for extended precision integer arith-
metic is to be used, there are many

R E M A R K S O N
C H O O S I N G A N D
I M P L E M E N T I N G

R A N D O M
N U M B E R

G E N E R A T O R S

choices better than 2:31 - 1 for the
modulus of the generator.
• Most congruential generators work
quite well for small simulations, but
their periods are far too short for
modern needs and the tendency is
toward other kinds of generators
with extremely long periods.

• If a generator is to be adopted as
an "industry standard," there is no
consensus that it should be a con-
gruential generator and far from a
consensus that it should be Xn----
16807Xn-1 mod 231 - 1.

Residue systems
Most modern CPU's treat integers
as 16- or 32-bit words. Examples with
strings of 16 or 32 bits are tedious
and difficult to follow, so we will as-
sume a simple CPU with integers of 4
bits. The ideas readily extend to 16-,
32- or even the anticipated 64-bit
CPU's.

8o, assume a two's-complement
CPU with integer words of 4 bits, and
thus there are 16 possible bit pat-
terns. For some applications it is use-
ful to use this set of residues to iden-
tify bit patterns, the least-positive
residue (LPR) system:

0000 0001 0010 0011 0100 0101 0110 0111
0 1 2 3 4 5 6 7

1000 1001 1010 1011 1100 1101 1110 1111
8 9 10 11 12 13 14 15

Such a system might be used inter-
nally, for example, for designating
memory locations. Many high-level
language implementations use the
analogue of the following set of rep-
resentations, the least-absolute resi-
due (LAR) system:

0000 0001 0010 0011 0100 0101 0110 0111
0 1 2 3 4 5 6 7

1000 1001 1010 1011 1100 1101 1110 1111
- 8 - 7 - 6 - 5 - 4 - 3 - 2 - 1

C O M M U N I C A T I O N S O F T H E A C M July 1993/Vol,36, No.7 S O S

It is important to note that the CPU
doesn't "know" what residue system
is intended; it is wired to produce a
double-word bit pattern for arithme-
tic operations on pairs of one-word
integer bit patterns. Addition or
multiplication of two inl:egers pro-
duces a double word pattern with the
rightmost word usually considered
the result. Thus multiplying 010l by
1001 produces the double work
00101011, with the rightmost word
the "answer." This is interpreted in
the LPR system as 5 × 9 = 13, which
is ordinary arithmetic modulo 16,
while in the LAR system this is inter-
preted as 5 × - 7 = - 3 , a~gain arith-
metic modulo 16, but using least ab-
solute residues. Addition of two
integer words works in a :dmilar way
- - a double word is formed with the
rightmost word taken as the "an-
swer." Thus adding 1100 to 1101
produces 0001 1001 with the right-
most word 1001 taken as the answer.
In the LPR system this is interpreted
as 12 + 13 := 9, while the LAR inter-
pretation is (-4) + (-3) =: - 7 ; in ei-
ther case, the residue of 24 is appro-
priate for that particular residue
system. Results are similar for mod-
ern 32-bit (or 16-bit) CPU's: integer
arithmetic produces the bit patterns
consistent with arithmetic modulo
232 (or 216), with interpretation in a
particular residue system left to the
user.

Note that the default settings of
some compilers call fo:c "integer
overflow" messages when the sum or
product of apparently po,'.itive num-
bers produces a negative number ,
and program switches may have to be
set to prevent interrupts. No such
problems occur with machine lan-
guage instructions, and the pro-
grammer may exploit the way the
instructions are "wired," free to use
whatever residue system he chooses
- - lease absolute, least positive or, as
we shall see in the following, some
other interpretation of the way bit
patterns are produced and identi-
fied.

Applications
As was poinred out in Communicat ions

in 1968 [5], extremely fast imple-
mentations of congruential random
number generators result from ex-

ploiting the modulo 232 arithmetic
inherent in two's complement CPU's.
Thus the single Fortran instruction
I = 69069*• or Pascal I := 69069*•
will cause the current (signed) ran-
dom integer I to be replaced by the
next element of the sequence gener-
ated by xn = 69069"x,_1 mod 232.
This is the system generator for
Vax's and part of the combination
generator in the widely used McGill
Super Duper generator for IBM
mainframes. Points in higher dimen-
sions with coordinates from the
69069 generator fall on a lattice, as
must those of all congruential gener-
ators [4,6], but some lattices are bet-
ter than others, and 69069 was cho-
sen for its good lattices. It should be
noted that the lattices of the pro-
posed "industry standard" x, =
16807xn-1 mod 231 - 1 are not very
good ones; those of most any "ran-
domly" chosen multiplier such as
314159269 are much better for that
modulus.

MOdUlUS 2 s l - 1 VS. M O d U l U S 232 - 2

The generator advocated by Park
and Miller [10] as a "minimal stan-
dard" random number generator is
the congruential generator xn =
16807x,-1 rood p for the prime mod-
ulus p = 231 - 1, or, more generally,
xn = axn-1 mod p for any primitive
root a of p. Arithmetic modulo p is
not easily implemented. Park and
Miller suggest using double precision
or use of computers able to handle
integers of up to 50 bits or fairly
elaborate programs that perform
extended-precision arithmetic by
breaking integers into parts then
doing arithmetic on, before combin-
ing, the parts. But, there are more
desirable prime moduli for ex-
tended-precision implementations.
The closeness of 231 - 1 to a power
of 2 is its redeeming (and damning)
feature, fully exploitable only
through machine language imple-
mentations.

We now describe a method for
exploiting that feature through inte-
ger arithmetic. A previous old, as
well as a recent new article in the
Communicat ions have discussed such
implementations: Payne, Rabung
and Bogyo [11] for IBM 360s in 1969
and Carta in 1990 [2] for unspecified

CPU's that seem to do integer arith-
metic with 31-bit registers, a variety
unknown to us. Our new proposal
has several advantages: it leads to
faster and easier implementations
and it produces both positive and
negative random integers for high-
level language use.

We will use modulus 232 - 2
rather than 231 - 1. Thus our gener-
ator is x,, = 16807xn-1 mod 232 - 2,
or, more generally, xn = axn-1

mod 232 - 2 for any odd primitive
root a of the prime 231 - 1. Let x be
the current random number , a 32-bit
word. Form the product a x x in ad-
jo in ing 32-bit words. Call it y. We
may view y as y = 232t + b, where t is
the integer in the top-half, and b the
integer in the bottom-half of the two-
word product. We want y modulo
232 - 2. Writing y = 232t + b =
t (2 3 z - 2) + b + 2 t shows that y is
congruent to b + 2t modulo 232 - 2,
and that is the basis of our proce-
dure. If the two-word sum b + 2t
does not extend into the top word
and only requires one word, we have
our new random number x; if it does
extend into the top we must repeat
the process. This may be described as
a formal procedure, using top() and
bot() to indicate the top and bottom
halves of a two-word product or sum:

Form x ~ ax in adjoining
32-bit registers

Form x ~-- bot(x) + 2top(x)
until top(x) = 0

The sum b + 2t should be formed as
b + t + t, or perhaps by shifting t, to
avoid multiplication.

A machine language implementa-
tion of this procedure will produce
random 32-bit integers, with period
231 - 2, from any initial 32-bit inte-
ger (the seed) except 0 or 231 - 1.
Most languages invoking the proce-
dure will view the results as signed
integers in the range -231 to 23[-1
inclusive. Such an integer may be
converted to a uniform number on
(-1 ,1) by multiplying by the real
2 -31 , but more rapidly in machine
language by shifting and inserting
the appropriate exponent. Similar
manipulat ions can produce a uni-
form real on (0,1).

Many simulation programs benefit
from having signed random integers

106 July 1993/'%1.36, No.7 ¢ O M M U l U C A T I O N S ~ O F T H I E A ¢ M

or reals available directly, avoiding
the cost of, say, convert ing a uniform
U o n (0,1) to a V o n (- 1,1) by means
of V = 2 U - 1 . For example, the
fastest methods for generat ing nor-
mal and other symmetric random
variables may suffer a significant loss
in average generat ion time if only
positive, ra ther than half-positive,
half-negative r andom numbers are
available.

The case f o r m o d u l u s 232 - - 5

The ability to provide, th rough ma-
chine-language manipulat ions of the
top and bot tom words of a two-word
sum or product , rap id reductions for
a modulus near 232 naturally raises
the question of using the pr ime clos-
est to 232. Tha t pr ime is 232 - 5. We
can make reductions modulo 232 - 5
in a manner similar to that for 232 -
2, except that to the bottom we must
add 5 times the top, the latter accom-
plished th rough a shift and an add.

The same arguments apply for the
pr ime modulus 232 - 5 . To imple-
ment a genera tor for that modulus
we need a primitive root. A good one
is 69070. Thus, for any 32-bit seed
x0, except those represent ing
0,1,2,3,4, and - 5 , the sequence xn =
69070x~,_ l mod 232 -- 5 will have
per iod 232 - 6 and will produce ran-
dom signed integers if it is imple-
mented in a system that interprets
integer bit pat terns as least-absolute
residues of 232 and reduct ion mod-
ulo 23z - 5 is effected by means of a
machine language rout ine that forms
b + 5t until the new t vanishes, as de-
scribed. The six integers 0,1,2,3,4,
and - 5 cannot a p p e a r - - a drawback
of no significance in a set of
2,147,483,643 positive and
2,147,483,647 negative integers.

Double Precision
Implementations
I f speed is not important , one may
p rogram a congruential genera tor in
double precision. In doing so, one
should choose modulus and multi-
plier to satisfy as many of these crite-
ria as possible: long period, few
short -per iod subsequences, good lat-
tice and good performance on statis-
tical tests. Marsaglia [6] and Knuth
[3] discuss the lattice structure of
congruential generators and Knuth

describes s tandard tests of random-
ness. Marsaglia [7] describes more
str ingent tests.

With a pr ime modulus p the pe-
r iod will be p - 1, so p should be
made as large as possible, subject to
the restriction that the primitive root
a o f p produce a genera tor with good
lattice propert ies and the product ap
not exceed 253 , to avoid loss of bits in
the generat ing process. One can usu-
ally f ind good multipliers a with from
14 to 20 bits, thus suggesting primes
p of some 33 to 39 bits.

Periods of subsequences of con-
gruential sequences depend on fac-
tors of p - 1, the period. As long as
one is free to choose p, subject to a
few restrictions, one should consider
those for which p - 1 has few factors.
It always has 2 as a factor, of course,
and the fewest factors come from
having (p - 1)/2 also a prime. Primes
p such that (p - 1)/2 is also pr ime are
called safeprimes. Here is a list of the
safeprimes p closest to 2 i for i = 31 to
40, together with the least primitive
root for that p:

231 - 6 9 , 6; 232 + 91, 5; 233 - 9 , 5;
234 + 79, 5; 235 - 849, 7

236 - 137,7;237 - 45,5;238 - 401,5;
239 - 381, 5; 24o + 437, 6

For any of these safeprimes, every
odd power of the listed least primi-
tive root is also a primitive root. This
provides a plentiful supply of full-
per iod multipliers for those seeking
good lattices. Simple methods for
de termining the lattice structure are
in [6].

Other Generators
Several o ther kinds of r andom num-
ber generators have been developed,
partly to overcome the problem of
the relatively short periods of con-
gruential generators in 32-bit ma-
chines. Among them are combina-
tion generators, lagged-Fibonacci
generators, congruential generators
with multiple lags and a new kind of
generator , subtract-with-borrow [9],
that is current ly considered one of
the best of all. I t has simple ari thme-
tic (subtraction) and astonishingly
long periods, typically 250o to 218°°. A
popular descript ion is in Science News
Nov. 9, 1991, and implementat ions
are available on computer networks.

(Write me or send emaih geo@
stat.fsu.edu)

A recent survey article by Ander -
son [1] describes all but the last of
these, as does [7], which also de-
scribes tests more str ingent than the
s tandard ones for evaluating genera-
tors. In addition, reference [8] ad-
dresses the question of an "industry
s tandard" or "universal" generator
and suggests one that has been
widely adopted; its per iod is some
2 1 4 4 "

Summary
Generators using modulus 231 - 1
are attractive only if they are imple-
mented in machine language, but for
such implementat ions the modulus
232 -- 2 is preferable: it has the same
period, provides simpler implemen-
tations and produces both positive
and negative r andom numbers. The
pr ime 232 - 5 , closest to 232, also
provides simple and fast machine
language implementat ions, both pos-
itive and negative r andom integers
and has a longer period.

For double precision or o ther ex-
tended precision implementat ions,
the modulus p = 231 - 1 is a poor
choice: it is relatively small and p - 1
has far too many divisors. Larger
primes provide longer periods. Bet-
ter are larger safeprimes p among
those listed. For them, (p - 1)/2 is
also pr ime and thus half of the resi-
dues of p are primitive roots. Exam-
ple: 16807 is a primitive root of the
safeprime 238 - 401. The genera tor
xn-- 16807xn-1mod 2 3 8 - 401 can
be implemented in double precision
with no loss of bits and has per iod
128 times as long as that of the pro-
posed "industry s tandard." But any-
one using a double precision imple-
mentat ion of such generators would
be better served with one such as xn
= 534059xn-1 - 4416Xn-2 mod p =
231 - 69, which has per iod p2 _ 1,
about 262 or 5 × 1018.

While these arguments raise ques-
tions about the suitability of the
congruential genera tor Xn =
16807Xn-1 mod 2 sl - 1 as an indus-
try s tandard, a more impor tant ques-
tion is: Should any generator be desig-
nated a standard?

There is no question of the need
for precise rules for de termining the

" ¢OMMUNICATIONSOFTHIIACMJu]y 1993/Vol.36, No.7 I 0 e l

e lements o f a sequence o f supposed ly
r a n d o m numbers , to ensu re that
expe r imen t s may be ver i f ied o r be
capable of ,exact dupl ica t ion in a wide
variety o f compute rs . Methods such
as those in [8] a re d i rec ted to that
end.

But the idea o f an indus t ry stan-
d a r d smacks o f s tagnat ion and self-
satisfaction. In us ing de terminis t ic

me thods to s imulate r a n d o m n e s s we
are all, as Von N e u m a n n said "in a
state o f sin." Every de te rminis t ic
scheme for p r o d u c i n g r a n d o m n e s s
must have appl icat ions for which it
gives bad results. Only the collective
expe r i ence and imagina t ion o f devel-
opers and users o f r a n d o m n u m b e r
gene ra to r s will lead to a be t te r un-
d e r s t a n d i n g o f what those applica-

tions are. Only t h r o u g h encour -
a g i n g - r a t h e r than s t i f l i ng - -
e x p e r i m e n t a t i o n can we, as Shake-
speare u rged , "plate sin with gold."

George Marsaglia
Department o f Statistics

The Florida State University

Tallahassee, F L

A
A N O T H E R T H S T F O R

R A I l I D O l l l N I - ' S i

l t hough the need for tests o f
p s e u d o - r a n d o m n u m b e r
gene ra to r s (RNG's) has been
deba ted [10], somet imes test-
ing proves valuable.

O n e s imple te~,;t is as fol-
lows: Let the m i n i m u m possible out-
pu t o f a g iven R N G be 1, and the
m a x i m u m possible o u t p u t be H.

For each o f the seeds 1 :-< s -< N, let
the first n values o f the R N G se-
quence s tar t ing with seed s be de-
no ted rsl, rs~ rsn. T h e basic ques-
t ion is: Fo r what i is rsi the m a x i m u m
o f the sequence rs~, rs2 rsn ~.

Let N << n << H.]Let Ms =
max(rsi:l <-i <-n), and let Is be the
lowest i ndex i such that rsi = M s. T h a t
is Is is the index o f the m a x i m u m
value for seed s.

Since n <~ H, one would expec t
the Is values to be d is t r ibuted uni-
fo rmly over the values 1 z_~ Is ~ n. In

Figure 1. Press's linear
congruen t i a l me thods

fact, this is a classical "balls and urns"
p rob lem: each m a x i m u m corre-
sponds to drawing , with replace-
ment , one o f a set o f balls n u m b e r e d
1 to n f r o m an urn.

Since N << n, one wou ld expec t
that no ball (or value o f Is) would be
d r awn m o r e than a few times. T h e
probabil i ty that at least one ball is
d r awn m o r e than k t imes may be
f o u n d as follows: Let Ak , i be the even t
that ball i is d r awn no m o r e than k
times. Let Bk be the even t at least one
ball is d r a w n m o r e than k times.

P[Bk] = P [I A] ~/ ~ A 2 k~ • • •

V"qAn] ~ ZjP["qAj] = n P [T a l]

Now, P[~A1] = 1 - P[Az] =
Y k=0(~V)p/(1 _ p)N- j

where (N) is the b inomial coeff ic ient
N!

and p = 1/n.
j ! (N - j) !

So P[Bk] <-- n[1 -- Y~k=0(U)pl(1 -- p)U-j]

F o r N = 100 and n = 105, calculat ion
yields P[Ba0] -< 2.35 x 10 -25.

In English: w h e n us ing 100 d i f f e ren t
seeds, the probabil i ty that the se-
quence ' s m a x i m u m value occurs at

suits on Press's quick l inear con-
g ruent ia l m e t h o d s [12] r e f e r to Fig-
u re 1. Fo r results on Park and
Miller 's l inear congruen t i a l m e t h o d
re fe r to F igure 2. No te he re that Is =
1311 occurs 97 times.

T h e probabi l i ty o f any Is o c c u r r i n g
m o r e than 96 t imes in a t ruly r a n d o m
sequence is less than 8.37 x 10 -344.

A p p a r e n t l y the re is a serious flaw in
the Park-Mil ler RNG.

Stephen J. Sullivan
Mathcom Inc.

Lafayette, CO

R e s p o n $ o
O u r 1988 article in Communications
[10] has p r o v e n to be o f ten cited, in
p r in t and on e lec t ronic networks, a
t r ibute in par t to the widesp read
r eade r sh ip o f Communications. T h e r e
are f o u r points we want to m a k e rela-
tive to o u r article. We t r ied to stress a
r a n d o m - n u m b e r - g e n e r a t o r philoso-
phy o f simplicity, portabi l i ty and effi-
ciency. Consis tent with this philoso-
phy, we p re sen t ed a par t icu lar
e x a m p l e o f a L e h m e r g e n e r a t o r and
advoca ted it as a "min imal s t andard . "

1
97
1
1

Figure 2. Park and Mil ler 's
l inear congl ruent ia l m e t h o d

the same index Is in the sequence , for
m o r e than 10 d i f f e ren t seeds, is
- 2.35 x 10 -25.

Fol lowing are results o f tests on
several publ i shed RNGs, us ing N =
100 and N = 10000. Marsaglia 's sub-
t rac t -wi th-borrow g e n e r a t o r [9]:

x n = Xn- s -- Xn- r -- £ mod b, using
b = 231 , r = 48, and s = 8: All values
o f I, occu r r ed exactly once. For re-

To de f ine the phrase min imal stan-
da rd , in the th i rd p a r a g r a p h we
wrote " . . . this is the g e n e r a t o r that
should always be u s e d - - u n l e s s one
has access to a r a n d o m n u m b e r gen-
e ra to r known to be bet ter ." At an-
o the r po in t we wrote " . . . this r ep re -
sents a good min imal s t andard
g e n e r a t o r against which all o the r
r a n d o m n u m b e r gene ra to r s c a n - -

108 July 1993/Vol.36, No.7 ¢ O M M U I | I C A T I O N S O F T H E A C M

and s h o u l d - - b e judged ," and in the
conclusion we wrote " . . . if you are
not a specialist in r andom number
generat ion and do not want to be-
come one, use the minimal stan-
dard." We nei ther stated or implied
that this genera tor should or would
put to rest the endless quest by spe-
cialists for ever-better r andom num-
ber generators.

The minimal s tandard Lehmer
genera tor we advocated had a modu-
lus of m = 231 - 1 and a mult ipl ier
o f a = 16807. Relative to this particu-
lar choice of multiplier, we wrote
" . . . if this paper were to be written
again in a few years it is quite possible
that we would advocate a different
mult ipl ier " We are now pre-
pared to do so. Tha t is, we now advo-
cate a = 48271 and, indeed, have
done so "officially" since July 1990.
This new advocacy is consistent with
the discussion on page 1198 of [10].
The re is nothing wrong with 16807;
we now believe, however, that 48271
is a little bet ter (with q = 44488, r =
3399).

We have great respect for the con-
tr ibution made by the text Numerical
Recipes [5]. The no-nonsense, plain-
speaking tone of this text combined
with the general high quality of the
software it contains, has made it a
valuable reference. We say this de-
spite the fact that the first edition
had a relatively weak chapter on ran-
dom number generation. We were
pleased, therefore, to find that this
chapter has been modif ied exten-
sively in the recently published sec-
ond edition, based in par t on our ar-
ticle and recent work by Pierre
L'Ecuyer.

In our article, we failed to mention
an impor tant feature that all good
random number generators should
h a v e - - t h e ability to generate multi-
ple streams of r andom numbers.
Space limitations prevent us from
providing justification for this state-
ment or discussing how nicely Leh-
mer generators are in general , and
the minimal s tandard in particular,
provide a mult is tream capability. For
those interested, however, source
code (in C or Pascal) for a 256-stream
implementat ion of the a = 4 8 2 7 1
genera tor is available. The file
rngs.tar, a Unix tar archive of the

source code, can be retr ieved in the
pub directory of the anonymous ftp
account on ftp.cs.wm.edu (please use
binary transfer mode).

Comments on Marsaglla
Marsaglia has a long history of signif-
icant contributions to the field of
r andom number generation. We
yield to his expert ise relative to the
mathematical theory of Lehmer gen-
erators and do not refute any of his
math. We do, however, have a prob-
lem with his in terpreta t ion of our
original article and his advocacy of
register-level p rogramming in this
application.

We never proposed an "industry
s tandard" r andom number genera-
tor. Indeed, we only used this phrase
once, in the first pa rag raph of our
original article, and then only in the
context of characterizing the gener-
ally bad state of r andom number
generators used in practice. I f some
self-appointed experts on the Inter-
net have used our original article as a
justification for stifling addit ional
research, then we are disappointed
that the system is not working cor-
rectly. If, instead Marsaglia thinks we
are guilty of trying to stifle addit ional
research, then we hope he will now
recognize that wasn't our intent.

I ndependen t of the statistical
goodness of the genera tor advo-
cated, we reject the register-level al-
gor i thm descript ion and implemen-
tation Marsaglia recommends. We
know from experience that this kind
of thinking and p rogramming leads
to nonportable , obscure random-
number-genera t ion source code
which violates good software engi-
neer ing principles and practices.
The re are applications for which as-
sembly language p rogramming is
necessary; this isn't one of them.
Avoid the use of any genera tor that
can't be clearly, efficiently and porta-
bly implemented in a high-level lan-
guage.

To summarize, there are five prin-
ciple points Marsaglia makes. We
generally agree with the first, third,
and fourth. We reject, however, the
premise of the second p o i n t - - t h e r e
is no need or justification for a
"tricky machine language implemen-
tation" of the minimal s tandard gen-

erator. Relative to the fifth point, we
rei terate our advocacy of a minimal
s tandard and our opposi t ion to the
more rigid, formal notion of an in-
dustry s tandard random number
generator .

Comments on Sullivan
All r andom number generat ion algo-
r i thms are deterministic. Given that,
one can always find statistical tests
which even the best generators will
fail, perhaps spectacularly. Tha t is
what Sullivan has done. We found
the test results interesting and ini-
tially puzzling. One of us, however
soon provided a mathematical expla-
nation which solved the puzzle, mak-
ing it clear that, to some extent, the
"failure" is a characteristic of all Leh-
mer generators. Moreover, the "fail-
ure" is so spectacular because Sulli-
van uses the smallest possible initial
seeds 1, 2 N. Tha t is, for exam-
ple, if instead N initial 31-bit integer
seeds are selected at random (using,
say another genera tor or the state of
the genera tor at the end of one test
as the next initial seed) the "Park-
Miller RNG" will pass Sullivan's test
without difficulty.

The kind of weakness {dentified-
by Sullivan's test would be most likely
to be a potential problem in repli-
cated trials of a stochastic experi-
ment. This problem would arise in
this application, however, only if one
seeded each trial with the index of
the trial or in some other simple de-
terministic way. Reseeding in this
way would be contrary to s tandard
practice (which is to use the state of
the genera tor at the end of one trial
as the initial seed for the next trial),
but we concede that some naive users
might use the minimal s tandard gen-
erator in this way and, in that sense,
Sullivan has identif ied a serious Leh-
mer genera tor flaw. Unfortunately,
space limitations prohibi t us from
discussing this further .

The second edition of Numerical
Recipes advocates the minimal stan-
da rd genera tor in the sense we in-
tended. The second edition also ad-
vocates an enhancement of the
genera tor using a s tandard shuffling
algori thm [12]. We generally endorse
this enhancement . Indeed, we have
verified that the (a = 16807 or a =

COMMUNICATIOH|OleTR|ACMJuIy 1993/VoL36, No.7 ~ 0 9

48271) minimal standard generator
with shuffling passes Sullivan's test as
well as the other two generators he
cites (one of which is no longer advo-
cated in Numerical Recipes).

Comments on Carta
In retrospect, when Carta's original
article was first published [2], we
should have commented on it. We
didn't , however, so now is the time to
do so. Although the article's title may
suggest otherwise, the generator as
implemented by Carta is not the min-
imal standard; it isn't even a full-
period generator. We know of no
good reason to use Carta's generator.
Moreover, for the reasons men-
tioned previously, we reject the asso-
ciated register-level programming he
advocates as antithetic to our random
number generation philosophy.

Summary
The construction of a simple, port-
able, efficient algorithm which can
simulate randomness well enough to
pass any reasonable statistical test

remains a challenging activity today,
just as it was more than 40 years ago
when Lehmer's original paper was

"f irst published. The needs today,
however, are more demanding.
Computers can now easily run simu-
lations which consume thousands of
random numbers per second,
thereby increasing the demand for
generators with periods much larger
than 231 . Moreover, the increased
use of parallel machines has gener-
ated a significant interest in parallel
algorithms for random number gen-
eration. For all these reasons, ran-
dom number generation remains an
active, albeit highly specialized, area
of research.

Given the dynamic nature of the
area, it is difficult for nonspecialists
to make decisions about what gener-
ator to use. "Give me something I can
understand, implement and p o r t . . .
it needn ' t be state-of-the-art, just
make sure it's reasonably good and
efficient." Our article and the associ-
ated minimal standard generator was
an attempt to respond to this request.
Five years later, we see no need to

IT'S TIME To

96,000 acres of
irreplaceable." rain
fores t are b u r n e d
every day.
The rain forest is
t h e w o r l d ' s great-
es t p h a r m a c e u t i -
cal s t o r e h o u s e . It
p r o v i d e s s o u r c e s
for a q u a r t e r o f
t o d a y ' s drugs; a n d
m e d i c i n e s a n d
seventy percent of
the plants found
to have anticancer
properties.
This senseless
destruction must {

stop. NOW!

National Arbor
Day ~ ~
Foun- ~ ~
d a t i o n , ~ . ~
the ~ ~
world's ~ t
l a rges t
tree- " ~
planting
environmental
organization,
and support Rain
Forest Rescue
to help stop the
destruction.
You'd better call
n O W .

O The National
Arbor Day Fc

} i Ca l l R a i n F o r e s t R e s c u e .

I 1 -800 -255 -5500

aher our response other than to sug-
gest the use of the multiplier a =
48,'!71 in place of 16807.

Stephen K. Park
Keith W. Miller

Paul K. Stockmeyer
Dept. of Computer Science, The College

of William & Mary
Williamsburg, VA

References
1. Anderson, S.L. Random number

generators on vector supercomputers
and other advanced architectures,
SIAM Review, 32, 6 (June 1990), 221-
251.

2. Carta, D.G. Two fast implementa-
tions of the "minimal standard" ran-
dom number generator, Commun.
ACM 33, 10an. 1990), 87-88.

3. Knuth, D.E. The Art of Computer Pro-
gramming, 2nd Ed. Addison Wesley,
Reading, Mass. 1981.

4. Marsaglia, G. Random numbers fall
mainly in the planes, Proc. Nat. Acad.
Sciences USA, 61 (1968), 25-28.

5. Marsaglia, G. and Bray, T. One-line
random number generators and their
use in combinations, Cbmmun. ACM,
11 (1968), 757-759.

6. Marsaglia, G. The structure of linear
congruential sequences. Applications
of Number Theory to Numerical Analysis,
Z.K. Zaremba, Ed., Academic Press:
New York (1972), 249-285.

7. Marsaglia, G. A current view of ran-
dom number generators. Keynote
Address, Computer Science and Sta-
tistics: 16th Symposium on the Inter-
face. In Proceedings of the Symposium,
L. Billard, Ed., (North-Holland,
Amsterdam, 3-10).

8. Marsaglia, G., Zaman, A. and Tsang,
W. Toward a universal random num-
ber generator. Statistics and Probability
Letters, 9 (Jan. 1990) 35-39.

9. Marsaglia, G. and Zaman, A. A new
class of random number generators,
Annals of Applied Probability 1, 3 (1991)
462-480.

10° Park, S.K. and Miller, K.W. Random
number generators: Good ones are
hard to find. Commun. ACM 31, 10
(Oct. 1988), 1192-1201.

11. Payne, W.H., Rabung, J.R. and
Bogyo, T.P. Coding the Lehmer
pseudo-random number generator,
Commun. ACM 12, 2 (Feb. 1969), 85-
86.

12. Press, W.H., Flannery, B.P.,
Teukolsky, S.A. and Vetterling, W.T.
Numerical Recipes in C. 2nd Edition,
Cambridge University Press, Cam-
bridge Mass., 1993. []

110 July 1993/Vol.36, Nod ¢ O M M U N I I C A T I O N S O I B V H I A C M

