
PRACNIQUE

Edgar H. Sibley
Panel Editor

Although superficially time-consuming, on 32-bit computers the minimal-
standard random number generator can be implemented with surprising
economy.

Two Fast Implementations of
the “Minimal Standard”
Random Number Generator

David G. Carta

Park and Miller [Z] described a number of portable
high-level language implementations called the “Mini-
mal Standard” random number generator. These imple-
mentations are based on the multiplicative linear con-
gruential form:

s,+~ = as,mod(Z3’ - 1) (11

where the currently used multiplier a is 16,807, and the
authors project they may switch to a = 48,271 or a =
69,621 in the future.

This article presents, in generic form, two implemen-
tations at the machine-language level that can be of use
when large quantities of random numbers are required
and speed of generation is an important issue. This is
very frequently the case in real-time simulation.

The discussion is geared to the commonly found
computer processors with 82-bit registers that use I bit
for the sign and 31 bits for the magnitude of integers.
We will assume that the product of two integers will
occupy two of these registers. Schematically, we pre-
sent the product as shown in Figure 1.

Each block in Figure 1 represents a St-bit unsigned
integer and as = Pp + 9. Note that the quantities a and
p occupy less than half their registers.

In the past, a number of generators were imple-
mented with the modulo operation based on 2” where
m is the number of register bits available for the magni-
tude of an integer. Methods of this type have an enor-
mous advantage in execution time as no actual divi-
sion-usually a slow operation-needs to be performed.
(The original description of the minimal-standard gen-
erator [l] used a division.) The integers are multiplied,
and the modulo operation is executed by just ignoring
the high-order register. By simple manipulation we will
show that division is not necessary for calculations
modulo P - I either.

01990 ACM OODI-0782/90/0100-0087 $1.50

Using Frac = Fractional part, we rewrite Equation

(1) as

as,
S ,,+, = (231 - 1)Frac - [1 231 - 1 PI

= (231 - 1)Frac as,[Zm31 + 2-2(3’1

+ 2--3(31) + . . .I
(3)

= (F? - 1)Frac(23'p + 9)

. [2-31 + 2-2(31) + 2-3(31) + ...I
(4)

S n+l = (231 - l)Frac[p + (p + 9)2-31
(5)

+ (p + 9)2-2(3’) + . . .].

Ifp+9-=2 , I 3’ that is the sum does not overflow its
81-bit register, then the fractional operation above
removes just the p, and we arrive at the dramatically
simple result

sn+1 = p + 9. (p + 9 c 231). (‘3

If p + 9 2 z31, then

S n+l = (231 - I)[-1 + (p + 9)2-3*
(7)

+ (p + 9)P@‘J + . . .],

so that

s,+1 = p + 9 - 231 + 1. (p + 9 z 231). (8)

At the machine register level, Equations (6) and (8)
have a simple and easily-implemented interpretation: if
the sum p + 9 does not overflow its register, then s,+~ is
just equal to that sum. If the sum p + 9 overflows, we
simply discard the overflow and increment the register
by one to get s,,+~.

Though algorithmically different, the procedure just
derived is mathematically equivalent to a previous
scheme [3] to avoid the division implicit in the modulo
operation.

January 1990 Volume 33 Number 1 Communications of the ACM 87

Pracnique

I a =a

I s =s

I P -7 1 4 = as

FIGURE 1. A Representation of the Product of Two Integers as
Adjacent 31.Bit Registers

AN ALTERNATIVE ALGORITHM
We observe that since p occupies much less than a full
register, it will be exceedingly rare that an overflow on
p + 4 will occur. On the average, overflows were ob-
served to occur approximately four times per million
iterations.

The infrequent occurrence of an overflow suggested
that a useful generator might be implemented by al-
ways taking s,+~ = p + 4 and ignoring any overflow.
This modified generator is thus equivalent to

and

asn = 231p + q, PI

s,,+~ = p + q mod(23’). 110)

The risk of this approach is that the period of the
generator will be too short to be useful or that some
value of s will become zero, rendering all future values
zero. Experimentation with a few starting values pro-
duced the useful starting value so = 40. With this start-
ing value no overflow occurs until iterate number
1,650,422. Until this first overflow occurs, the sequence
is identical to the minimal-standard generator. After
n = 28,820,115 iterations (and 101 ignored overflows) sn
reaches the value 6,609 without cycling. At iteration
number 56,919,724 the value 6,609 is again reached and
further iterations repeat the 28,099,609 long cycle. The
dreaded value of zero never occurs.

Effectively, then, with so = 40 approximately 57 mil-
lion iterates are produced before cycling occurs, and
the following cycles are about 28 million iterations in
length. The starting value so = 1 is convenient to re-
member and almost as good. The first overflow occurs
at iteration number 551,246: the value sn = 6,609 is
reached at iteration step n = 27,427,124; and from there
the 28,099,609 iteration cycle begins.

For many purposes the modified procedure can be
the generator of choice. It is implemented with a single
multiplication and addition at each iteration and re-
quires no logic to determine and correct for overflow. It
inherits all of the favorable properties of the minimal
generator since between the extremely rare overflows
(that are ignored) the sequences are subsequences from
the minimal generator. It takes a long time before cy-
cling begins, and once it does, the cycle is also long.

The modified method developed above is of course
specific to the multiplier a = 16,807. The alternative
multipliers 48,271 and 69,621 mentioned by Park and
Miller in [2] were tested with a few different initial

values, and although neither degenerated to zero, nei-
ther performed as well as 16,807. .With 48,271 the itera-
tions began to cycle at between one and two million
steps, and all iterations became trapped in a c:ycle of
about a million steps in length. Using 69,621 as the
multiplier with a starting value of 3, the iterations ran
for about 15 million steps and then entered into a cycle
of about 5 million steps in length.

In the search for longer cycling variations of the
modified method, it is suggested that generators with
smaller multipliers be examined. By inspection it is
obvious that p cannot be larger than a. The smaller p
can become, the less likely overflow will take place in
the sum p + 9. With fewer overflows there will be
fewer opportunities for cycling. Therefore, testing
smaller values of a is indicated.

A SECOND ALTERNATIVE ALGORITHM
A second variation to the basic algorithm also suggests
itself. Rather than ignore the occasional overCow of the
sum p + 4 which calls for incrementing the :sum by
unity, one can simply increment every sum, again ig-
noring overflows. Because this variation has no subse-
quence belonging to the minimal standard, it was not
examined. It might, however, yield a useful fast genera-
tor. With a generator of this type, there wou1.d be no
need to fear a zero appearing in the sequenc’e.

CONCLUDING REMARKS
Using the basic procedure, Equations (6) and (8), the
minimal standard can be implemented very economi-
cally on computers with 32-bit arithmetic. Depending
on the instruction set available and the application
using the generator, either of the variations may be
viable alternatives.

REFERENCES
1. Lewis, P.A., Goodman, AS.. and Miller, 1.M. A pseudo.random num-

ber generator for the System/360. IBM Syst. 1. 8, 2 (1969). 136-146.
2. Park, Stephen K., and Miller, Keith W. Random number generators:

Good ones are hard to find. Conm~un. ACM 32. 10 (Oct. l!E%).
1192-1201.

3. Payne, W.H.. Rabung, J.R.. and Bogyo. T.P. Coding the Lehmer
pseudorandom number generator. Commun. ACM 12. 2 (Yeb. 1969),
85-66.

CR Categories and Subject Descriptors: G.3 [Mathematics of Com-
puting]: Probability and Statistics--number generation: G.4 [Mathematics
of Computing]: Mathematical Software--efficiency

General Terms: Algorithms. Performance, Standardization
Additional Key Words and Phrases: Lehmer generator. machine lan-

guage, simulation

-
ABOUT THE AUTHOR:

DAVID G. CARTA is an independent PC consultant with in-
terests in physical, biological, and business applications. He is
a licensed control systems engineer. Author’s Present Address:
CIENTEC, 3775 Fairmeade Road, Pasadena, CA 91107.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage. the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by parmission of
the Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

aa Communications of the ACM January 1990 Volume 33 Number 1

