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Although superficially time-consuming, on 32-bit computers the minimal- 
standard random number generator can be implemented with surprising 
economy. 

Two Fast Implementations of 
the “Minimal Standard” 
Random Number Generator 

David G. Carta 

Park and Miller [Z] described a number of portable 
high-level language implementations called the “Mini- 
mal Standard” random number generator. These imple- 
mentations are based on the multiplicative linear con- 
gruential form: 

s,+~ = as,mod(Z3’ - 1) (11 

where the currently used multiplier a is 16,807, and the 
authors project they may switch to a = 48,271 or a = 
69,621 in the future. 

This article presents, in generic form, two implemen- 
tations at the machine-language level that can be of use 
when large quantities of random numbers are required 
and speed of generation is an important issue. This is 
very frequently the case in real-time simulation. 

The discussion is geared to the commonly found 
computer processors with 82-bit registers that use I bit 
for the sign and 31 bits for the magnitude of integers. 
We will assume that the product of two integers will 
occupy two of these registers. Schematically, we pre- 
sent the product as shown in Figure 1. 

Each block in Figure 1 represents a St-bit unsigned 
integer and as = Pp + 9. Note that the quantities a and 
p occupy less than half their registers. 

In the past, a number of generators were imple- 
mented with the modulo operation based on 2” where 
m is the number of register bits available for the magni- 
tude of an integer. Methods of this type have an enor- 
mous advantage in execution time as no actual divi- 
sion-usually a slow operation-needs to be performed. 
(The original description of the minimal-standard gen- 
erator [l] used a division.) The integers are multiplied, 
and the modulo operation is executed by just ignoring 
the high-order register. By simple manipulation we will 
show that division is not necessary for calculations 
modulo P - I either. 
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Using Frac = Fractional part, we rewrite Equation 

(1) as 

as, 
S ,,+, = (231 - 1)Frac - [ 1 231 - 1 PI 

= (231 - 1)Frac as,[Zm31 + 2-2(3’1 

+ 2--3(31) + . . .I 
(3) 

= (F? - 1)Frac(23'p + 9) 

. [2-31 + 2-2(31) + 2-3(31) + ...I 
(4) 

S n+l = (231 - l)Frac[p + (p + 9)2-31 
(5) 

+ (p + 9)2-2(3’) + . . .]. 

Ifp+9-=2 , I 3’ that is the sum does not overflow its 
81-bit register, then the fractional operation above 
removes just the p, and we arrive at the dramatically 
simple result 

sn+1 = p + 9. (p + 9 c 231). (‘3 

If p + 9 2 z31, then 

S n+l = (231 - I)[-1 + (p + 9)2-3* 
(7) 

+ (p + 9)P@‘J + . . .], 

so that 

s,+1 = p + 9 - 231 + 1. (p + 9 z 231). (8) 

At the machine register level, Equations (6) and (8) 
have a simple and easily-implemented interpretation: if 
the sum p + 9 does not overflow its register, then s,+~ is 
just equal to that sum. If the sum p + 9 overflows, we 
simply discard the overflow and increment the register 
by one to get s,,+~. 

Though algorithmically different, the procedure just 
derived is mathematically equivalent to a previous 
scheme [3] to avoid the division implicit in the modulo 
operation. 
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I a =a 

I s =s 

I P -7 1 4 = as 

FIGURE 1. A Representation of the Product of Two Integers as 
Adjacent 31.Bit Registers 

AN ALTERNATIVE ALGORITHM 
We observe that since p occupies much less than a full 
register, it will be exceedingly rare that an overflow on 
p + 4 will occur. On the average, overflows were ob- 
served to occur approximately four times per million 
iterations. 

The infrequent occurrence of an overflow suggested 
that a useful generator might be implemented by al- 
ways taking s,+~ = p + 4 and ignoring any overflow. 
This modified generator is thus equivalent to 

and 

asn = 231p + q, PI 

s,,+~ = p + q mod(23’). 110) 

The risk of this approach is that the period of the 
generator will be too short to be useful or that some 
value of s will become zero, rendering all future values 
zero. Experimentation with a few starting values pro- 
duced the useful starting value so = 40. With this start- 
ing value no overflow occurs until iterate number 
1,650,422. Until this first overflow occurs, the sequence 
is identical to the minimal-standard generator. After 
n = 28,820,115 iterations (and 101 ignored overflows) sn 
reaches the value 6,609 without cycling. At iteration 
number 56,919,724 the value 6,609 is again reached and 
further iterations repeat the 28,099,609 long cycle. The 
dreaded value of zero never occurs. 

Effectively, then, with so = 40 approximately 57 mil- 
lion iterates are produced before cycling occurs, and 
the following cycles are about 28 million iterations in 
length. The starting value so = 1 is convenient to re- 
member and almost as good. The first overflow occurs 
at iteration number 551,246: the value sn = 6,609 is 
reached at iteration step n = 27,427,124; and from there 
the 28,099,609 iteration cycle begins. 

For many purposes the modified procedure can be 
the generator of choice. It is implemented with a single 
multiplication and addition at each iteration and re- 
quires no logic to determine and correct for overflow. It 
inherits all of the favorable properties of the minimal 
generator since between the extremely rare overflows 
(that are ignored) the sequences are subsequences from 
the minimal generator. It takes a long time before cy- 
cling begins, and once it does, the cycle is also long. 

The modified method developed above is of course 
specific to the multiplier a = 16,807. The alternative 
multipliers 48,271 and 69,621 mentioned by Park and 
Miller in [2] were tested with a few different initial 

values, and although neither degenerated to zero, nei- 
ther performed as well as 16,807. .With 48,271 the itera- 
tions began to cycle at between one and two million 
steps, and all iterations became trapped in a c:ycle of 
about a million steps in length. Using 69,621 as the 
multiplier with a starting value of 3, the iterations ran 
for about 15 million steps and then entered into a cycle 
of about 5 million steps in length. 

In the search for longer cycling variations of the 
modified method, it is suggested that generators with 
smaller multipliers be examined. By inspection it is 
obvious that p cannot be larger than a. The smaller p 
can become, the less likely overflow will take place in 
the sum p + 9. With fewer overflows there will be 
fewer opportunities for cycling. Therefore, testing 
smaller values of a is indicated. 

A SECOND ALTERNATIVE ALGORITHM 
A second variation to the basic algorithm also suggests 
itself. Rather than ignore the occasional overCow of the 
sum p + 4 which calls for incrementing the :sum by 
unity, one can simply increment every sum, again ig- 
noring overflows. Because this variation has no subse- 
quence belonging to the minimal standard, it was not 
examined. It might, however, yield a useful fast genera- 
tor. With a generator of this type, there wou1.d be no 
need to fear a zero appearing in the sequenc’e. 

CONCLUDING REMARKS 
Using the basic procedure, Equations (6) and (8), the 
minimal standard can be implemented very economi- 
cally on computers with 32-bit arithmetic. Depending 
on the instruction set available and the application 
using the generator, either of the variations may be 
viable alternatives. 
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